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The theory of gas mixtures is extended to cases where there

m_y be large differences in the flow velocities and/or temperatures

of the species in the mixture; the species are no___tassumed to be

in local equilibrium. Transfer equations for the thirteen moments

of each species are constructed relative to the species' flow

velocity; the equations are closed by means of the Grad approximate

velocity-space solution for the species' distribution functions.

The partial collision integrals occurring in the transfer equations

are then expressed as functions of a dimensionless velocity,

3- (_t- _)/(as2+ a2)!/2 ' the ratio of the difference in species'

flow velocities to a "mixed sound speed." The integrals are

evaluated for two limiting cases: (i) [3[ << 1 , arbitrary iso-

tropic collision cross sections ; (ii) [_[ >> 1 , arbitrary inverse

power interparticle force laws. A final set of exact calculations

is made for the "Maxwell molecule" force law.

Various statistical collision models are next presented as

possible substitutes for the Boltzmann binary collision operator,

With a view towards duplicating the partial collision integrals of

that operator.

Finally, transport quantities are calculated for: (a) weakly

ionized gas ; (b) binary Maxwell molecule gas; (c) fully ionized gas.
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CSAPTER I

INTRODUCTIGN

The theory of gas mixtures has received widespread attention

over the past sixty years, beginning with the pioneer work of

(hapman I and Enskog 2 whose series solutic_s to the Boltzmann equation

converge sufficiently rapidly when the individual species of the

mixture are near complete equilibrium with a .c..o._ flow velocity

and temperature. The theory was extended over the ensuing years to

treat nonequi.li_ri_n situations where the species are close to loc.____

equilibrium individually, but not necessarily in equilibrium with

each other. Hence, closed sets of transfer equaticr_s for mass,

momentum, and energy, for each species, have been developed by

several workers 3-11 for a mixture of gases having separate Maxwellian

velocity distributions (with separate flow velocities and/or

temperatures). Exact calculations have been made for 'certain inverse

power interpartlcle force isles, f = _/rp , namely, p _ _ ("hard

spheres"), P = 5 ("Maxwell molecules") , p -- 3 , p = 7/3 , and

p = 2 (Coulon_ force law); approximate results have been given for

ll
other force laws. Because of the assumption of local Maxwellian

distribution functions, the calculations in references [3] - Ill]

involve c_ly the first five "velocity moments" of the species'

distribution fuucticas: the species' number density: flow velocity,

_nd temperature. The situation where the species are no_.!tin local

1
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equilibrium has been investigated by several authors ±2-16 using the

so called "Grad 17 thirteen moment approximation" of the individual

species' velocity distribution functions; here, the distribution

functions depend upon the higher order velocity moments N the

traceless pressure tensors and heat flow vectors, in addition to

the first five moments. THUS, in this scheme the gas mixture is

described by closed sets of transfer equations for mass, momentum,

energy, traceless pressure, and heat flow, for each species. Small

differences in flow velocities are considered in references [12] -

[15], with arbitrary temperature differences assumed in [12], [14],

[15]; references [12] - [14] involve general interparticle force

laws, while [15] deals with a fully ionized plasma. The calculations

of Everett 16 are for a fully ionized plasma (i.e. the Coulomb force

law) and allow for large differences in both the species flow

velocities and temperatures.

_he primary goal of this dissertation is to extend the theory

of gas mixtures to situations involving general interparticle

force laws where the individual species are no___tin local equi-

librium, and where differences in species flow velocities and

temperatures are arbitrary; furthernore, the species are completely

general in the sense that no assumption is made regarding particle

mass, number density, or electric charge. The Grad thirteen moment

approximation fonts the basis for the calculations, which are all

relative to the species flow velocities and temperatures. It is

!
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anticipated that the results will hold for a large bo_y of non-

equilibrium problems not covered by the work in references [3] -

Ill] (i.e. when the species distribution functions are non-

Maxwellian) or by references [i], [2], [12] - [15] (i.e. when there

exist large differences in the species flow velocities and/or

temperatures). Many of the results in reference [16] can be

recovered as a special case (i.e. the Coulomb force law) from the

present work.

Throughout this dissertation the particles in the gas mixture

are treated as ideal point centers of force (except for the case of

"hard spheres" which are treated as "billiard balls" with finite

spatial extensions); hence, the internal structures of particles

such as positive ions and neutral atoms are completely ignored.

Processes of ionization, recombination, dissociation, association,

and radiation by moving charged particles are not taken into

account; relativistic and quantum mechanical effects are also

ignored°

The usual Boltzmann equation, with the Boltzmann binary

collision operator used for the collision term, is assumed to be an

adequate equation of motion for the species velocity distribution

function (i.e. the "one-particle" distribution function). This of

course assumes that binary collisions are of predominant importance,

and does not take into account the influence of the positions of

the colliding particles; hence, restrictions are placed upon the

I
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density of particles and upon the ten_peratures of the species.

In Chapter II a brief review of kinetic and transfer theory is

presented. _he species' velocity distribution function is defined,

along with the macroscopic properties of the species. The afore-

mentioned Boltzmann equation is introduced and "velocity moments"

are taken to construct species transfer equations for a general gas

mixture. These equations are "closed" and the calculation of the

accompanying partial collision integrals is made possible by the

introduction of the Grad scheme for the approximation of the species

distribution functions. The validity of this approximation and the

ensuing evaluation of the collision integrals are then discussed.

The partial collision integrals are evaluated in Chapter III;

they are first expressed as functions of a dimensionless velocity,

÷ _ , 2 1/2
- (Ut- Us)_(a2+s at) , which is the ratio of the difference

in species' flow velocities to a "mixed sound speed," where

a2se 2KTs/m s with K denoting Boltzmann's constant and Ts , ms

the temperature and mass, respectively, of species "s" . Before

proceding with the evaluation, a relation between the partial

momentum and random kinetic energy collision integrals is derived,

which is valid for all "diffusion Mach number," I_I ; this relation

affords physical insight into the transfer of random kinetic energy

between species. Next, the collision integrals are evaluated for

two limiting ranges of I_l: (i) I_l << $, arbitrary isotropic

collision cross sections; (ii) I_I >> I , arbitrary inverse power

I
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Interparticle force laws. The two sets of results are compared

with respect to their dependence upon the "hi@her order moments" --

the traceless pressure tensors and heat flow vectors; the directions

of the momentum collision integrals of cases (i) and (li) are also

discussed. Next, the collision integrals are calculated exactly

for the "Maxwell molecule" interparticle force law for two cases:

(a) where all quantities are relative to the individual species'

flow velocities; (b) where all quantities are relative to the

mixture's flow velocity. From these calculations, conclusions are

drawn regarding the level of accuracy of calculations (i), (ii),

and those of references [12] - [14]. Finally, the dependence of the

collision frequencies upon the interparticle force law and the

diffusion Mach number is exhibited.

In Chapter IV a temporary digression im made from the transfer

phenomena theme in order to present certain simplified kinetic

models for the collision term in the equation of motion of the

species' velocity distribution function. Analyzed are the Gross-

Krook model 18, the Sirovich model 19, a revised form of the Sirovlch

model, and a model based upon a Grad-like expansion of the collision

term. The ability of the models to imitate the properties of the

Boltzmann binary collision operator is discussed.

The subject of transport phenomena is returned to in Chapter

V, in which the traceless pressure tensors and heat flow vectors of

I
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three systems are calculated for small diffusion Mach numbers. The

systems are: (I) a weakly ionized gas, with general inverse power

interparticle force laws and a magnetic field of arbitrary

magnitude; (II) a two-species gas composed of Maxwell molecules,

with arbitrary mass and density ratios; (III) a fully ionized

gas, in which the total (i.e. system) traceless pressure tensor is

determined as a function of the system's flow velocity and current

density.
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DEVELOFMENT OF THE TRANSFER EQUATIONS AND THE

GRAD THIRTEEN-MOMENT APPROXIMATION

In this chapter the basic quantities pertinent to kinetic

theory are defined through the usual concept of a distribution

function. All of the macroscopic quantities corresponding to a

certain species of the mixture are defined relative to the

distribution function and flow velocity of that species.

The Boltzmann equation is then presented, and by taking

velocity moments of this equation the various macroscopic quantities

are related by the resulting transfer equations.

The next section presents an approximate velocity-space

solution for the species' distribution function based upon a

truncated expansion in three-dlmensional Hermite polynomials,

con_nonly known as the "Grad thirteen moment approximation." In this

way the transfer equations become a closed set of coupled partial

differential equations, provided their collision integrals can be

calculated.

2,i The Distribution Function and Macroscopic Quantities

The material of this section can be found in references [20] -

[22]. We begin by considering a general gas mixture composed of an
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arbitrary number of distinct species. The velocity distribution

function, or simply the distribution function, for species "s" is

defined such that the quantity

Fs(_'+v, t)_d_ (2.1)

gives the probable number of particles of species "s" located in

the volume element d_ about x , with velocities in the range d_

about v , at the time t . The differential lengths and velocities

in (2.1) must be small compared with macroscopic distances and

velocity intervals over which there are significant changes in the

macroscopic properties of the species; at the same time, however,

they must be sufficiently large so that there are a large number of

particles in d_ d_ , thus allowing Fs(X , v, t) to be a continuous

function of its variables. We note from the definition that the

species distribution function is non-negative, and that

s(X' v, t) ÷ 0 as I_i ÷ (2.2)

It follows as a consequence of the definition (2.1) that the number

density for species "s" (the number of "s" particles per unit

volume) is given by

Ns + (I,+ )_(x, t) = f Fs v, t (2.3)

maSS •

N

A "species" is in general defined by its electric charge and

I
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where the integration is performed over the entire velocity space.

The average over all velocity space, or simply the velocity average,

of any quantity ¢(_, ÷v, t) is defined as

< ¢(_, ÷ i Fs ÷ + -_ ÷v, t) > -= I (x, v, t)¢(x, v, t)d_ (2.4)

where the subscript "s" on the average symbol "< >" indicates

that the velocity averaging is to be done with respect to the

species "s" distribution function. We note from (2.3) and (2.4)

that if ¢ is independent of the velocity, then

< ¢(_, t) > = ¢(x, t) • (2.4a)
S

The average velocity of species "s" particles or the flow velocity

of species "s" is

Us(X,t ) -z< _ > = _-I Fs(X,v,t)v d_ •
S S

(2.5)

The peculiar or randcm velocity of species "s" particles relative

to the species "s" flow velocity is

Cs(X,v,t) = v - _s(X,t)
(2.6)

J

Unless otherwise stated, all integrals without explicit limits

are to be taken over the entire domain of the variable of
ixi

integration, e.g. I Fs(X,v,t)dv - Ill Fs(X,v,t)dVldV2dv 3 •
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from which it inm_diately follows that

-9-

< c > - 0 . (2.7)
Ss

The temperature of species "s" is defined in terms of the

velocity average of the random kinetic energy of species "s"

3 K Ts(X,t) s < msC >
2 s

(2.8)

where K is Boltzmann's constant, and ms is the mas____sof a species

"s" particle.

The J-k element of the species

simply the species "s"

Ps PsCs Csk >Jk (x't) - < J s

"s" pressure tensor, or

p.ressure tensor , is deflnedas

(2.9)

where J,k = 1,2,3, and Ps is the mass density of species "s"

_t ÷
Ps(X, ) = msNs(x,t) . (2.10)

The hydrostatic , mean, or scalar pressure of species "s" is given

by

÷t 1 +t
Ps(X, ) _ _Psii(x, )

(2.11)

With any quantity such as PsJk ' the first subscript refers

to the species; any other subscripts refer tO the spatial direction.

The one exception to this occurs in Section5.4, where quantities

appear without species subscripts .....

I
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where, unless otherwise stated, a repeated direction index is to be

sunm_d, e.go Psii e Psll + RS22 + PS33 " From (2.8), (2.9), and

(2oii) we obtain

Ps = NsK Ts (2.12)

which is a form of the perfect gas law. The non-hydrostatic or

traceless pressure tensor of species "s" is defined as

1 6jkC2s) > =PsJk(x't) - < _s(CsjCsk - 3 s Psjk- 6JkPs (2.13)

where _Jk is the Kronecker delta

, otherwise

(2.14)

The heat flow tensor of species "s" is defined as

-_ t >

qsijk(X, ) e < 0sCsiCsjCsk S ' (2.15)

while the heat flow vector of species "s" is given by

_ t i _ i 2+
qs ( , ) e _qsiikak = < _ 0sCsC s > , (2.16)

where ak is the unit vector in the kth direction, k - 1,2,3.

Finally, we define a fourth-order tensor

!
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P

Pshijk(x,t) = < PsCshCsiCsjCsk >
S

(2o17)

The preceding velocity average quantities are often referred to

as "velocity moments," or simply "moments", of the species dlstribu-

tion function. It is important to observe that these moments have

herein been defined relative to the species' flow velocity, u
S

(see Eq. (2.6)), as opposed to analogous definitions relative to the

mixture flow velocity 23, _ , where

I pu(x,t) --Z PsUs , and (2.18)
S

I

I

p(x,t) -= Z Ps (2.19)
S

is the mass density of the mixture.

I
I

I

2°2 The Boltm_nn Equation and Equations of Transfer

The equation of motion for the species "s" distribution

function is given by 24

aF 6F 6F

J aFs aFs fsi s (__)
ms collisions r sr

collisions

I

I
÷÷ N

where _s(X,v,t) is the external force acting on a species

(2.20)

"S"

I t
The term "external force" refers to all forces other than

those involved in collisions.

i

I
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÷ .+

particle which is located at x with velocity v at the time t ,

and (_Fs/_t)sr gives the average time rate of change

collisions

of the species "s" distribution function due to collisions of

species "s" particles with species "r" particles. The sun,nation

in (2°20) is over all the species in the mixture, including

"r" = "s" , and there is an analogous equation for each species.

Equation (2°20) beccmes the Boltmmann equation if the right-hand

side is given by 25

z(6Fs/6t)sr = Z [ISS(FsFrl- FsFrl)gbdbd_d_ l] (2.21)
r

collisions

where g is the relative velocity between a particle of species

"s" and its collision partner of species "r"

g _ vI- v , (2.22)

b is the impact parameter of the binary collision, _ is an angle

specifying the collision plane (i.e. the orbit of the colliding

"r" particle relative to the "s" particle), and the primes refer

.+ @ ! -

to post collision quantities, e.g. F' e Fr(X,Vl,t) . Therl

integrations in (2.21) are taken over all possible impact para-

meters, collision plane angles, and velocities. The term in

N

The subscript "l" is used simply to distinguish the

velocities of the colliding partners.

I
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brackets, "[ ]" , in (2.21)• is known as the Bolt_nann binary

collision operator for collisions between particles of species

and "r" o

"S"

If the equation of motion (2.20) could be solved for the

species' distribution function, s(X,v,t) then of course all of

the previously defined velocity moments could, in principle, be

directly calculated° However, when the Boltzmann binary collision

operator, (2o21), is included, the set of equations for the species'

distribution functions becomes a set of nonlinear integro-partial

differential equations which is in general untractable. One method

of circumventing the difficulty is to construct a set of transfer

equations for the moments and employ some sort of truncation scheme

to close the set.

If we multiply equation (2.20) by an arbitrary quantity

Q(x,v,t.dv and integrate over all velocity space, we obtain a

generalized transfer equation for the quantity Q(x,v,t) .

Performing the integration term by term in the usual way 26, we

find

_Q > + _ (Ns< Qv >)-N < v i _Q > -

6Fs
Ns < f . _Q > / Q (_-_)coll.d_ : 6Q
ms sl _vi s

(2.23)

where 6Q = Z f/f/ (Q'- Q)FsFrl gbdbd_dvdv1_ +
r

(2.24)

I
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when the Boltmnann binary collision operator (2.21) is used. The

right-hand side of (2.23) is referred to as the collision integral

for the quantity Q(x,v,t) . A trivial consequence of (2.24) is

that for any velocity independent quantities, Q(x,t) , ¢(x,t) ,

gQ(x,t) ---0 , and (2.25a)

6[_(x,t)Q(x,v,t)] z _(x,t)_Q(x,v,t) . (2.25b)

In what follows we shall be dealing with Q's

explicit functions of the randcmvelocity

which are

Q = h(C_s) , (2.26)

but it must be kept in mind that - (x,t) , so thatCs

= H(x,v,t) .27)Q- h(c s) = h(_ ) • (2- Us(X,t)

_ i m 2
Then taking Q(x,v,t) to be ms , msCsk , _ sCs ,

2
ms(CsjCsk- ½ _jkCs ) , and ½ms s sKc2c " we obtain, respectively,

the mass conservation equation, the momentum equation, the random

kinetic energy equation (or simply the "energy" equation), the

traceless pressure equation, and the heat flow equation for

species "s"

DsN s +

mass conservation: _ + N s V.u s = 0 (2.28a)
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momentt_n:
DsUsk + @Ps @Pslk ÷

Ps "-_ _ + _- Ns[es (_ + UsX _)+ ms_]k

= _(msCsk) (2.28b)

energy:
3 DsDs ÷ ÷

D--T"+ _ Ps v.us+ Pstj _ + v.% i msc_)

(2.28c)

+ e__s t
traceless pressure: + PsJk V'Us" 2 ms (Bi_ljhPsk h) +

+2(PsiJ @Usk_ff ^ "SUs'1"f%' _ (qslJk 2

- 6(msCsjCsk) _ 6jk 6(½m 2- sOs) (2.28d)

.. Dsqsk

heat r_ow: _+ qsk

@Usk eS ÷

V'_s+ qsl Bxi ms (qsX _)k

_Ps _Ps Ps Ps__)
-(_-_j BXS_i )(5 _S 6jk+ ++ PS + qslJk BXi

+i _x-7_ o_(½m_o_c_-_ •_s (2 Ps6Jk+PsJk) 6(msCsj

(2.28e)

In (2.28a-e) we have introduced the "hydrodynamic" differential

operator

Ds _ -_

_-: (_+Us.V) , (2.29)

•

I
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the alteratlng tensor

+l, If i,J,h Is an even permutation of 1,2,3
¢lJh _ -i, if i,J,h Is an odd permutation of 1,2,3 (2.30)

0 , otherwise

the symmetrized second order tensor

and the traceless symmetrized second order tensor

%_*_½%_÷_ - __ • (2.31b)

In obtaining (2.28a-e) we have employed the definitions for the

moments given in Section 2.1, along with the fact that < c > _ 0 .
ss

The right-hand side of the mass conservation equation, (2.28a), Is

zero since we are considering only those collisions in whlch the

mass of a given particle Is uncharged, so that

Finally, we have assigned the external force
s

Lorentz force plus a gravitational force

Q'- Q _ ms- ms s 0 .

to be given by the

fs es(_'+ _ x N)+ _ * (2.32)

where es is the electric charge of an "s"

Is the external electric field intensity, B

species particle,

is the external

E

Rationalized MES units are used throughout thls work.
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magnetic flux density, and G

acceleration.

is the external gravitational

Inspection of the set of transfer equations (2.28a-e) shows

that there are, in general, a total of thirteen independent scalar

equations with thirteen unknown scalars Ns. us, Ts (or ps ) ,

PsJk ' qs ' plus the second and third order tensors PslkJJ '

qsiJk ' for each species (the traceless pressure tensor PsJk

constitutes only fiv___eindependent unknown scalars, since it is

symmetric, PsJk --PskJ ' and traceless, Psil ---0 ). Hence, as it

stands, the set of transfer equations is not closed; however, we

shall see in the next section that, with suitable approximate

velocity-space solutions for the species' distribution functions,

the higher order tensors can be expressed in terms of the "first"

thirteen moments, thus closing the set of transfer equations. Of

course, without same such knowledge of the distribution functions,

we could never hope to obtain a closed set of transfer equations

since, as can be seen from (2.28a-e), each succeeding equation is

coupled to the next higher moment equation. The reason for this

coupling can easily be seen from the equation of motion, (2.20);

this equation contains the term vi_Fs/_X i , so that the transfer

equation for a quantity proportional to _k will involve a "higher

velocity moment" proportional to < --vn_+l>.
S

I
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2o 3 The Grad Velocity Space Approximation to the

Distribution Functions

In order to express the higher order tensors PslkJJ ' qsiJk '

which appear in the traceless pressure and heat flow equations in

terms of the first thirteen moments and therby close the set of

transfer equations, we employ the Grad scheme. 17 In this scheme

the distribution fuoctions are expressed in three-dlmensional

Hermite polynomials, and the expansion is terminated in such a w_v

that the distribution functions depend upon the first thirteen

moments (Ns, us, Ts or Ps ' PsJk ' qs ) ' but not upon any higher

order moments ("higher" both in the sense of higher order tensors

and higher degree in the random velocity). Such a termination is

Justified to the extent that these thirteen moments are the ones of

usual interest in kinetic theory and plam_a physics , plus the

reasonable expectation that higher order moments shauld be

I relatively unimportant over a wide range of situations.

I

I

I

Following Grad, we expand the species' distribution functions

about a locally Maxwellian distribution in terms of three

dimensional Hermlte polynomials

co

_(n)_(n) ÷
Fs = F(°)sn--OZ....sl si (Bs) (2.33)

_ Ns 2 2 Ns e_82/2

_(o) = _ e-Cs/asI where _s ,-_

!
(2.34)

I

I
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2O

is the local Maxwellian distribution function for species "s"

_s -- _ _slas '

I/2

as = (2K Ts/m s)

and (2.B5)

(2.36)

is the "sound" or "thermal" speed of species "s" . In the

'(n)(_s) is an tnt--h-hordertensor with n indices,expansion (2°33), "sl

i _ (il,ooo,i n) , and is also an tn_-hdegree polynamial In the

dimensionless velocity _s ; the coefficient _(n) is an tnt--h-horder
°si

tensor and the usual convention for stmmmtlon over a repeated

direction index is to be applied to the index set i = (il,... ,_) .

Before procedSng we should note from (2.33) that, because each

con_onent polynomial of H_n)is orthogonal to each cam_ne_t poly-

nomial of --H}m)withrespect to the "welghtlr_ function"
_(O)

unless
.L""s _ . .

m=n and (il,o.o,_) is a pemutatlon of (Jl""'Jn)' the calcula-

of the coefficients sl;b(n)Isunaffected by the choice of thetion
• '. : . " I.; : _ _.,.:, • ....... ":... "

truncation point. 27

The first four tensors _(n) are27

_(O) = 1 (2.37a)
s

H(I) (2.BTo)
si = Bsi

H(2)
s±j_ BsIBsJ-6_ (2.37c)

H(3) _
siJk- _si_sJBsk - (Bsi6Jk + fisJ_Ik+ _sk6iJ ) "

(2.37d)

I
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Substituting (2.37a-d) into (2.33) and contracting the indices of

b(3) H(3)
slJk siJk so that the highest order tensor introduced into the

expansion will be of second order, thus insuring the closing of the

set of transfer equations (2.28a-e), we obtain

= F(O) b(O) (0)+ b(1)H(1)+ _(2) H(2}_.b(3) H(3) 1
Fs s [ s Hs si si Usij siJ sijj sikk _

_(o) _b(O) '+ (i)' b(2) b(3) 2
=m's - s b . +sl 8si sij 8siBsj + siJJBsiSs ]

or, in terms of the random velocity, c ,
S

-(°)[b + A c +B ....c c + 2
Fs = Fs s si si S!J si sj CsiCsiCs] "

(2.38)

The evaluation of the coefficients in (2.38) is accomplished

by recalling the following "constraints"

Ns = I Fsd_ = /Fsd$ s (2.39a)

+ _ 1
> = _ I FsCsdC (2.39b)

0 - < Cs s s_s S

3KT _=< imsCs2 > _ 1- =_S f Fslic2 dE2 s s ss s
(2.39c)

Note that lh(x,v,t)d_ ÷ + ÷
= /h(x,v,t)dc s , since dvi= d(Csi+Usi)'-

dCsi inasmuch as Usi = Usi(_,t) is held constant during the

integration.

I
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i

PsJk --< Ps(CsJOsk - ½ djkCs )>
S

and

IFsPs(CsjCsk- _6 kC2)dSs
s J

(2.39d)

qs - < Psc >s = 1__IF s i 2+ +N _ PsCsCsdCs •
S

(2.39e)

Substituting (2.34), (2.38) into (2.39a-e) we obtain

bs = 1

Asi = -4qsi/Psa4
S

2
Bsi j = Psij/Psas

2 Asi

Csi - 5 a 2 '
S

(2.40a)

(2.40b)

(2.40c)

(2.40d)

so that (2.38) becomes

-(o)[i +PsiJ CsiCsj
Fs = _s Ps a2

S

4qsl 2 c2

- - ----_(i _)Csi _ .
_sas 5 as

(2.41)

From (2.34), (2.41) we see that, to this level of approximation,

the velocity-space solution for Fs depends upon the "first"

thirteen moments Ns' _s (through _s ) , Ts or Ps ' PsJk ' and

qs ; hence, the solution (2.41) is often referred to as "Grad's

thirteen moment approximation."

The higher order terms PsikjJ ' qsiJk which occur in the

I
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traceless pressure and heat flow equations, (2.28d, e), can now be

related to the first thirteen moments; substituting (2.41) into the

definitions for these terms, we obtain

Ps
PsikJj _ < _ c2c c > = _ (TPsik+

s s si sk s _s 5Ps61k)
(2.42)

> = _qsk_iJ+ _ik+ . (2.43)and qsiJk _ <_sCsiCsjCsk s qsJ qsi_Jk )

Substituting (2.42), (2.43) into (2.28d, e) we obtain the following

,
closed set of transfer equations:

DsN S +

conservation of mass: --_--+ Ns V.u s = 0 (2.44a)

momentum:
DsUsk

s Dt

8Ps _Psik + + +

--+ _ + _- NsEes(E+ UsX_)_sa_k

= 6(msCsk) (2.44b)

3 DsPs + 25_ps V'Us+ _+ + = 6(lm c2) (2.44c)
energy: 2-_ ÷ PsiJ _xi V.qs s s

traceless pressure: _+ V._ s- 2 es
Dt Psjk _s(BiEiJhPskh )t +

= 6(msCsjCsk)- _ _Jk6(lmsc2s) (2.44d)

Whenever we refer to a "closed" set of transfer equations,

such as (2.44a-e), it is understood that we are actually referring

to the system's closed set of l___equations, where r is bhe number

of species; a similar understanding holds for _ phrase such as

"thirteen moments" Ns, Us, Ts or Ps ' PsJk ' qs "

I



I
I

I

24

DUsk 2 _Usi

heat flow'. _sqs---_kDt+ 57-qsi(_ik V'_s+ --_i + 7 _)

e s _, -_I - ms (qsXB)k + Ps_ik (5 _Ps
7__ _"_ _o-

OS _-_i- 2 ms. _-'_'i" -_x_) +

I

I
I

I

Ps _Psik + 5 KPs _Ts

0s _xi 2 m s _xk

= 6(lm c2c _)_ 1 (5 Ps_ik+ Psik)_(msCsi )
s s sK Ps

(2.44e)

If we had not terminated the expansion (2.33) with the .

contraction of the third order Hermite tensor but rather had

I

I
I

retained the full tensor, the distribution function Fs would have

contained the third order tensor qsiJk and a transfer equation

for this tensor would have been required in order to obtain a

closed set of transfer equations. The point of truncation is to

a large extent arbitrary, it depending upon the degree of

I

I

complexity one is willing to introduce into the analysis and upon

how greatly the species distribution functions deviate from their

local equilibrium forms, that is, from _(o) *
_'S "

I

I
I

I

A system is in local equilibrium when (6Fs/6t)coll" = 0

for all "s" ; a species "s" is in local equilibrium when

(_Fs/6t)ss - 0 . It can be shown that Fs_O), theMaxwellian
coll o

distribution, is the _ local equilibrium distribution

function, 22'28 where Fs_°) can depend upon (_, t) .

I

I
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2.4 Further Approximations to the Distribution Functions
...= ....

We note that the distribution function given by (2.41) can be

written in the form

(°)(i + Cs)Fs = Fs (2.45)

: PsiJ CsiCsj 4qsi 2 C2s

..... ----[ (i - _ _ Csi (2.46)
where Cs Ps a2s Psas a2s) "

In the subsequent calculation of the collision integrals we shall

encounter a double integration over the quantity

/ % f %

FsFtld_sdC t = =[o)=_0)(1 + + " ÷ -__'s _tl Cs+ *ti ¢s¢t_dCsdCt" (2.47)

2

_(o)_(o) expE-(_+_)] ,Because of the exponential factor in _s _tl ' as

the major contribution to the integration (2.47) will stem from

the region cs _ as , ct _ at . For this region we assume that

Its! ,I¢t I are sufficiently small to allow the discarding of the

term CsCt in (2.47); that is

!¢Sl ,letI <<i for cs _ as , ct g at . (2.48)

For the condition (2.48) to be satisfied in general, each of the

terms in (2.46) must be small in the same sense as (2.48); taking

cs to be of the order of as , we find that these terms will be

small provided that

I
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!PsiJ I _ PS

and Iqsi I _ asP s = Ps(2Ps_Os )1/2

Simple calculations show that, when the species

e_uilibrium,

(2.49)

(2.50)

"s" is in local

i = F (°) (2.51)
PsiJ e 0 , qsi e 0 , for Fs s "

I
Hence, (2°49), (2.50) simply reflect the fact that F s is "close"

i to its local equilbrium for_a, _(o)FS "

i Finally, we note that although the condition l_sl << i

be made to hold for indefinitely increasing values of cs , no

i matter how small the coefficients in (2.46) are, the species "s"

i distribution function Fs is still quite close to its local
equilibrium form, _s_(°), due to the presence of the factor

2 2

i exp(-Cs/as) in Fs , equation (2.45) .

I

I

i

i

i

I

i
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CHAPTER III

EVALUATION OF THE COLLISION INTEGRALS

In this chapter we shall calculate the collision integrals

encountered in the construction of the transfer equations of Section

2.3. Insofar as the actual details are concerned, we shall only

present the calculation of the momentt_n collision integral (i.e.

the right hand side of the momenttmq equation, (2.44b)), since all

the computations are extremely involved and tedious. The results

for the other three collision integrals (energy, traceless pressure,

and heat flow) are also presented here, but the detailed calcula -_

tions are relegated to the appendices. For the most part the four

evaluations follow parallel analyses and the choice of the momentum

collision integral for presentation is merely one of convenience

(it being the simplest to calculate).

After several intermediate steps (both in the text and in the

appendices) we shall arrive at a point where the collision integrals

are presented as functions of a dimensionless velocity, c , whose

magnitude is sometimes referred to as the "diffusion Mach number. ,,lO

At this point a relation between the momentum and energy collision

integrals will be derived which is "exact" in the sense that it

holds for all diffusion Mach number, E .

Next, the collision integrals will be evaluated for two

27

I



28

limiting cases: (i) E << 1 , and (ii) E >> 1 . In case (i) the

calculations are for interparticle force laws which are arbitrary

to the extent that the collision cross sections are isotropic, i.e.

dependence on the relative velocity is limited to dependence on its

magnitude. In case (ii) the interparticle force laws are of the

inverse power type.

The four collision integrals are next evaluated exactly for a

particular inverse power interparticle force law, namely the

"Maxwell molecule" force law; the results are "exact" within the

limitations of the Boltzmann binary collision model.

In the last section the dependence of the collision frequencies

upon the interparticle force law and the diffusion Mach number is

exhibited.

3ol The Partial Collision Integrals as Functions of the

Diffusion Mach Number

To make the notation somewhat simpler we shall deal with

"partial" collision integrals; that is, for any quantity Q(x,v,t) ,

the total collision integral, or simply the collision integral, for

species "s" will be given by the sum of the partial collision

integrals

_Q _ z (_Q)st (3.1)
t

where (_Q)st is the contribution to _Q due to collisions of the
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"s" particles with the "t" particles, and the summation is over

all species, including "t" = "s" .

Using the Boltmuann binary collision operator, we have from

(2.24)

(6Q)st = IIII(Q,- Q)FsFt_b_dedvdv I (3.2)

where it will be recalled that primed quantities refer to post

collision values, and where Ftl = Ft(X,Vl,t) . For the partial

momentum collision integral we have

q = msCsk (3.3)

so that (3.2) becomes

[ 6(msCsk) ]st = ms IIYI (Csk- Csk)FsFtlgbdbd_d_d_l • (3.4)

We now introduce the following quantities:

mo _ ms+ mt

reduced mass = msmt/m o

-_ (ms_ _"center of mass velocity co - + mtvl)/m o

relative velocity between colliding partners g e VI_ V

(3.5a)

(3.5b)

(3.5c)

(3_5d)

Note that the momentum collision integral and the random

momentum collision integral are equal since 6(msCsk) = _) -

-_(msUsk ) = 6(msV k) by reason of (2.25a).

I
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recognizing that co co (the center ofSolving (3.5c,d) for v ,

mass velocity is unchanged in a collision, due to the conservation

of momenttm), and further that us : us (any quantity ¢(x,t) is

unaffected by a collision), we obtain

c, - : (v_-u, - : (_/mo)(gk- g_)sk Csk sk ) (Vk- Usk) (3.6)

so that (3.4) becomes

E_(msCsk)]st = # /SiS (gk- gk)FsFtlgbdbdEd_d_l ' (3.7)

In order to perform the integration over dE (recall that E

specifies the "collision plane_" and is not to be confused with the

"diffusion Mach number," 131 , whichwill appear later in this

section), we must express (gk- gk) in tenms of E ; this is

readily accon_lished by means of a coordinate transformation.

First, we suppose that g and _' refer to a rectangular co-

ordinate system with unit vectors ai , i = 1,2,3 ; next we

construct a local rectangular coordinate system with unit vectors

ax, _, az , such that _ lies along +az (see Figure i).

Z

.,d g!

N

FIG. i. LOCAL COORDINATE SYSTEM.

I
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I From Figure 1 we have

I g_sin× (axCOS c +-gaz ,_'- +aySin_)+a,oosx_

I where × is the "scattering angle," and where we have noted that

g = g' (see reference [29]). The transformation from (1,2,3) to

I (g,×,_) coordinates then gives us

"ak = g_Zkgk - (3.8a)

|

I

I

!

where k : 1,2,3, and _xk is the direction cosine between the x

and k- axes, ax.a k , etc. Substituting (3.Sa,b) into (3.7) and

performing the integration over d_ then gives us

[_(msCsk)3 : _ III 2_(l-cos×)bdbFsFtlggkd_d_l •
st

(3.9)

I At this point we introduce a seneral collision cross section 30

! S (£) e 2_ I (1-cos£x)bdb > 0 , _ : 1,2,... , (3.10)

I
I

I

!

where the limits on[b (the impactrparameter) are usually taken

to be (0, -) . Since the scattering angle × depends upon the

magnitude of the relative velocity, g (for central force laws),

upon the form of the force law, and upon the impact parameter, b ,

we seelfrom (3.10) that the cross sectionS (£) depenc_, for a given

central force liw, iioon the magnitude of the relative Velocity, i

l,e.. S(Z) S(£)(g) . We shall make use of this "Isotropy" of

I

I
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the cross sections in the calculations of Section 3.3.

tion of (3_10) into (3.9) gives us

N
Substitu-

[ g(msCsk) ] lggkS (1) ÷ += _// FsF t (g)dvdv 1 .
st

(3.11)

This is a well-known result and may be found in various sources

(see references [22], [31], for example).

To proceed with the integrations we now make a succession

of coordinate transformations. First, from (3.5c,d) we have

dCoidg i = IJldvidVli (no stmlnation here)

where J _ det

_Coi _gi

_vi _vi

_Co____i _gi

3Vli _Vli

= det

m

__s -I
m
o

mt
m +i
m
o

=l,

These calculations also hold for the larger class of cross

sections in which S (_) is an even and s_m_netric function of the

three variables (gl' g2' g3 ) ' i.e. S(_)(gl' g2' g3 ) =

S(_)(+gi, +gj, +_gk) where i, J, k is any permutation of l, 2,

3 ; however, we shall write S(_) = S(_)(g) for brevity, keeping

in mind that the results of Section 3.3 also hold for

S(_)(gl' g2' g3 ) = S(_)(+--gi'+-gj' +-gk) "

!
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so that dCoidgi = dvidVli (no stm_ation here), and thus,

dCo_= dVdV 1 • (3.12)

Substitution of (3.12) into (3.ii) gives us

[6(msCsk)] - u /I FsFtlggkS(1)(g)d_o_ .
st

(3.13)

Substituting the approximate velocity-space solutions for Fs, Ftl ,

(2.45), into (3.13) we obtain

c2 c2

-(_ + )

_NsN t

E_(m_c_k_t-_t'_3=e ( l+¢s+¢tl)ggkS(1) (g) dc%d_ ,

(3.14)

where we have neglected the term involving CsCtl in accordance

with the discussion of Section 2.4. A second transformation of

integration variables is now made; first, solving (3.5c,d) for

v , vI , we obtain

= c (mt/mo)g- usCs _ V--Us O--

and

ct - vl- ut - Co+ (ms/mo)g -

(3.15a)

(3,15b)

Introducing the velocity

_ _t_ _ (%_ _ _a/co _ Co-_C(mt/m o) - (ms/mo)a ].+ at + a )} , (3.16)

we obtain from (3.15a,b)

!
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cs = co- (as/ao)(Y - _)

and
%
-_ 2

-ct=co+(at/ao)Q - _)

(3.17a)

(3.17b)

where _ _ _a ° (3.18a)

: (ut- Us)/a ° (3.18b)

a2 at2) 1/2and ao- ( s + " (3.18c)

From (3.16), (3.18a) we have

%

Coag- a 3 dco _ , (3.19)

+

since co and g in (3.16) are to be treated as independent

variables (see definitions (3.5c,d)). Substitution of (3.17a,b),

(3.18a), (3.19) into (3.14) gives us

2 %

= _NsNt a° II d_odY y Yk S(1)(aoy)

i [6(msCsk)] _3 a3st p

_2

e__CA + + 2]I a: +(Y-_) c2

i • { 1 +Psi] csicsj 4qsi
_ a_ ---_<_-_ _>c_+

s. Psas s

2

i _ ctictj 4qti 2 ct"
+ - -_) cti }_t a_ __ at

I

, (3.20)

I

I
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1/2

where a -=asat/a ° = asat/(a2s + a2) , (3.21)

and where we have written out the term (l+¢s+¢tl) in full (see
q_

(2.46)). The integration over d_° in (3.20) can be performed

directly; we have the following integrals (see Appendix A for the

major steps involved) :

(1)

_:-2- 2

-Co/a_ = _3/2 a3
# d_o e

(±f)
/ d_ o Csi e s _3/2a2 a3 aol(yi__i )- S

_' -Co2/a_ _3/2 au3[ 1 a_6ij+ a_sa_2(yi_ci)(Yj_¢j)]I d_ o CsiCsj e --

q_

(iv) / d_
o

_2. 2

c2 -Co/a_ 3/2 3 2 -i_5 2 4 -2 ÷ ÷ 2_
sCsi e -_ a_asa o Lg j= a+asa ° (Y-_) (yi-_i)

For the same integrals (i) - (iv) with "t" instead of "s" we

may simply replace (-a_) in the results by (+_) in view of

the C_lUations for c s , c t , (3.17a,b). Using (i) - (iv) to
%

perform the dc% integration in (3.20) we obtain, after

considerable manipulation,

I
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++2

[6(msCsK-)]st : Cst I _ y Yk S(1)(ao y)e-(y-s) {i +

+Eij(Yi-Ci )(yj-sj)+ Ri(Yi-Ei)_l- _Y-sJ }

where

, (3.22)

Cst ___NsN tao2 -3/2 (3.22a)

Eij _ 2a_2( _ + _) (3.22b)
Ps Pt

I

I
I

I
I
I

I
I

and Ri __4a_3( qsi qti) .
Ps Pt (3.22c)

Expression (3.22) gives the partial momentteu collision integral

as a function of the dimensionless velocity c , whose magnitude,

, we shall refer to as the diffusion Mach n_nber, following

Morse's I0 nomenclature. As can be seen from (3.18b,c), _ is the

ratio of the difference in the species' flow velocities, ( - us)

tothe"_xe_soldspeed,"ao: (a2s÷ a_)1/2.

The results for the partial random kinetic energy collision

integral (which we shall simply call the partial energy collision

integral henceforth), the partial pressure collision integral, and

the partial heat flow collision integral are taken from Appendices

BandC ,

I

I F_er_: c6(lmsc2s)]st = a°Cst

+ )2
f d_ yyjS(1)(aoY)e-(y-e {Fij(Yi-¢i) +

|
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_.+ .+ _ 2_.1

+ Sj[I - _y-E) J- 4 Si(Yi_Ei)(Yj__j ) +

2,'+ .+_2,_

+(aTj+ bej)[l+Eip(Yi-ei)(Yp-¢p)+Ri(Yi-ei)(l - _y-e_ )j} (3.23)

-++2

Pressure: [6(msCsjCsk)] : aoCst / _ y e-(y-e) _2S(1)(aoy)y_ •
st

{Fik(Yi_ei)+ Sk_l - 2,-* .+,2]_o _Y-_) 4 Si(Yi_Ei )(yk__k) +

2..+ "+.2.., }%
+(aTk+bEk)Cl+Eip(Yi-_i)(Yp-_p)+Ri(Yi-_i)(l- _y-c) _ +

+ _ S(2) (aoY)(y26jk - 3YjYk) {l+Eip(Yl-e i) (yp-Ep) +

+ _(Yi-el)Cl- ._Y-E)2+ +.2] }3 (3.24)

Heat Flow: 2 S(1) --+-+.2E_<½mAc_>_={ao0,t_4_ <ao,>e-<'-_{...
2

, ..+., -+,2+ mt
[2yp(ayp+bep)(aYk+bek) + yk(tay.oe) _ y2)_

o

•CI +

2,.+ -+,2,_
+ Eij(Yi-_i)(Yj-cj)+ Ri(Yi-_i)(l-_Y -E) _J +

2t-_ +_2_

+ 2[Fij(Yi-Ei)+Sj(l- _Y-_) )- _ Si(Yi-ci)(YJ,_J)]'_2&YJYk +

a2

+ 2b(yjck)¢+(a,y2+ bXpep)6j_+ _ [ 5 yk+ yiGik +
a o

+ 2_ ELi (yi_¢iXYj_sj)Yk+ _ Ri(Yi__i)Yk(l_ _ .+ .+.2.:. iN-s) ) +
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I + _ HI(261kYJ (YJ-¢J)+ 9YlYk- 7Yk¢ 1- 2YiCk)_ } +

I

I

I

I

+ _oa°lmt 2 Cstl _ y(y26kp_ 3YkYp)S(2)(aoY)e _y_¢){Fip(Yl_¢i ) +

÷_- _-_- __-,_>!_-_>÷

2÷÷2
+(ayp+bep)[l+ Eij (yi-¢i)(yj-ej )+ Ri(Yl.¢l) (i- _y-¢) )_}

I where a (rota2 m a2"" 2 2K (Tt. Ts )- - s sJ/moao = 2

incao

I 2 2
b _ as/a o , (a+b =mt/m o)

I Fij _ (a2/a2)( Ptij -_) (Fil = O)

I _ Pt Ps '

I SI-= -(a_/a3) (qsi+Ps qt__l)pt

2 Ps

I Glj= (ap/2)('7 Pslj+ Pt2 Ptlj) ' (GilPs

3

(3.25)

(3.26a)

(3.26b)

(3.26c)

(3.26d)

O) (3.26e)

I

I
I
I

I

Pt Ps
Hi --- (a_/ao)(-_ qtl-_-'_ qsi )

Pt Ps

and where yj_ = yjAk+ YkAj) .

, (3.26f)

It is to be noted that the partial energy collision integral (3.23)

is simply one-half the trace of the partial pressure collision

integral (3.24); the partial traceless pressure collision integral

I
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is obtained from (3.23), (3.24),

1 _.,m c2)_ = [_(m c .Cs_)] - _ _jk_( lm c2)] .
[_(msCsjCsk- _ j_s s st s sJ K st s s st

We see from inspection of the results (3.22) - (3.25) that

the final integration is, in general, untractable. In order to

proceed, we shall consider two limiting cases: (i) E << 1 , (ii)

>_ 1 . In case (i) we consider general central force laws (i.e.
]

isotropic collision cross sections); in case (ii) we consider

5eneral inverse power force laws. First, however, we shall derive a

relationship between the partial momentum and energy collision

integrals which is valid for all _ ; the result will afford us some

physical insight concerning the transfer of energy between species.

3°2 Relationship Between the Partial Momentum and

Energy Collision Integrals

The partial momentum collision integral is

z + _2

_(mc _)] = Cst I _y YkS(1)(aoY)e -ky-ej {I +
_ st

_y-_) ]}+Eij(Yi_Ei)(yj_¢j)+Ri(Yi_ci)_l_2 + ÷ 2 (3.27)

We now rewrite the partial energy collision integral (3.23) in a

form which resembles (3.27),

[5(21--msCs2)]
st

++2

= aob_kCst I _ y YkS(1)(aoY)e -(y-_) {i +

I
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I

I

4O

+ Eij(Yi-Ci)(Yj-Ej)+ Ri(Yi-_i)[l- _Y-_) J} +

+ aaoCst I _ y3S(1)(aoY)e-(Y+-_)2{l+Eij (yi-_i)(Yj-ej) +

+ Ri(Yi_Ei)Cl_ 2 ÷ + 2 YkS(l ) ,+ ÷,2• _y-E) _}+aoCst I d_ y (aoY)e-_Y-E_ {.,,

Fik(Yi_ci)+SkCl - 2,+ -*,2,_y-c) j- 4 Si(Yi_Ei)(Yk_Ck)}

=-Il+ I2+ 13 , respectively. (3.28)

We see immediately frcm (3.27), (3.28), that

Ii = aobEkC6(msCsk)] • (3.29)
st

We note further that 12 n_ky be obtained by differentiating

[6(msCsk)] with respect to ck
st

aoa _Cg(msCsk)]st + aoaCk[_(msCsk)] +

I2 _ -_- _ek st

aoa s(1) .+ ÷2
+-_-Cst I d_y Yk (aoY)e-(Y-¢) {2Eik(Yi-ci ) +

2+-_ 2

+ _E_-_(y-_)_--_Ri(yi-,±)(yk-_k)} . (3.30)

Substitution of (3.29), (3.30) into (3.28) gives us
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c_½_o_ _o__c_t m_
st = _ _Ck '+ a° _oo Ek[6(msCsk)_ +st

+ aoCst I d_ y ykS(1) .+ +-2(aoY)e-(Y-c) {(Fik+aEik)(Yl-c i) +

+(Sk + _'aRk)l-l_ 2,+ +,2... _ a_y-c_ j- Si+ 2 Ri) (Yi-ci) (Yk-Ck) }

(3.31)

and substituting the definitions for Eij , Ri, a, Fij , Si , (3.22b,c),

(3.26a,c,d), respectively, we obtain finally

[6(2I-m c2)_ = K
s s st mjo (Tt-Ts) _Ck

SC_(msCsk)_t +mt
_o (utk- Usk)[ 6(msCsk)_st

÷

÷+2P

+ moao--2Csty _ Y YkS(1),taoY_e,-(y-c),,tt__ttik Psik,,_9_Yi-ci;" +
S

I

+__z(qsi }__t_)4 2 _ 2ao Ns + [ _yi-ci)(Yk-ek)-_ik(1- _y-c) )_} .

(3.32)

The underscored tenms in (3.32) correspond to the case where the

species' distribution functions Fs, Ft are Maxwellian; this is the

ii
result obtained by Tanenbat_n. The first underscored term is

proportional to the difference in species' temperatures and

represents the flow of energy between species "s" and "t" (that

is, the increase or decrease of the random kinetic energy of species

"s" due to collisions between the "s" and "t" particles) in the

form of heat transfer (not to be confused with the heat flow
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vectors) ; the second underscored term is proportional to the

difference in species flow velocities and represents the transfer

of randomkinetic energy between the species due to the "frictional

heating" of species "s" caused by the forces acting on it which

arise when the flow velocities are unequal. Since the remaining

term in (3°32) vanishes identically when either _ --0 (since

Psii :-0 , and the integrands involving the heat flow vectors are

odd for _ = O) , or when the species are in local equilibrium,

(o)
Fs = Fs , we may consider its contribution as an additional

"frictional heating" of species "s" which arises as the species

come to local equilibrium with a csmnon flow velocity.

Finally, when E = 0 , all the terms in (3.32) vanish except

the first underscored term, provided Ts # Tt , since from (3.32)

and (3°23),

msc2s) tj°

K

=m--j_ (Tt- Ts) aC_(msCa_ksk) ]stJ
_=0

= aaoCst I _y3S(1)(aoY)e -y2

8 _

moao
CstK(Tt - Ts) I dy y5S(1)(aoY)e -y2 # 0 ,

0

if Tt # Ts .
(3.33)

Thus, even when all the species flow velocities are equal, there

still exists energy transfer between species of different
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I temperatures

I 3.3 Evaluatl _r

Mach Number

I In this sec _ du
integrals (3o22) (3.25) for the limiting range

I convenience we b '118 _or_ rd 1;hepartial m,_mentt_

I (3.22),

[_(mc )] + (I) -(y-_)
I ++2s sk st = Cst I dy y ykS (aoY)e {I+E

I 2++2

+ _(yi-ei)Cl- _y-c) ]} .

I If we consider E_(m_c_,.)] as a _unction of th

"__ st

I variables _i(i = 1,2,3) , with all other quant

I treated as parameters (e.g. PsiJ ' qsi ' etc. ),
we ms_ expand (3.34) about _ = 0 using Taylor'

i remainder

I a[6(msCsk)] I

[6(mc _)] = [+(mc _)_ I + _ stl . _±+
I S SK st S SK stl+ ^ i I+_

_/_=u _/_=u

3.3 Evaluation of Collision Integrals for Small Diffusion

In this section we shall evaluate the partial collision

c << 1 . For

convenience we bring forward the partial momentum collision integral,

{l+Eij (yi-ci) (yj-Ej) +

(3.34)

as a function of the three independent

with all other quantities in (3.34)

, etc.), then for e << 1

using Taylor's theorem wlth

I

I

a2[6(msc_,_)] I

r _a st i _ + 0(_ 3) (3.35)

+ aElacj J_--O" 2_

I All four partial collision integrals have been calculated following

I

I
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this technique; however, the steps involved are extremely tedious

and lengthy and we shall not present them here. Instead, we shall

work with the direct expansion of the exponential in (3.34) and

retain terms up to those proportional to second order in _i

(i = 1,2,3) . For this purpose we rewrite (3.34),

[6(msCsk)]
st

2

= Cst I _ Y YkS(1)(aoY)e 2ypEp-E e-y2{l +

+Eij (yi_Ei) (yj_ej)+ Ri(Yi_ci)[l_ _y2_ 2yj ej+e2)] } .

(3.36)

2
Then expanding the factor exp(2ypCp-C )

retaining terms up to second order in

, multiplying out, and

Ei ' we have

[6(msCsk)]
st

1 2 o o o

= Cst / d_ y ykS( )(aoY)e-Y {l+Eij(yiYj-YiEj-yj_i+Ei_j) +

2 2 o 2 O 2,O2 cj)] ++RiYi[l- _y - 2yjEj+c )]- Riei[l- _y - 2yj

O

+2yp_p+ 2EijYiYjypC p- 4EijYiCjypC p +

o 2o2

+2RiYiyp_p[I__y _ 2yj_j)]_2Ri_iyp_p(1__ y2)+

O O

+2yp_pyq_q+2yp_pyq_qE_yiyj+2yp_pyq_qRiyi(I-_ y2)_

2 o o 2
-E [l+EijYiYj+ RiYi(l- _-y2)_} , (3.37)

I
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where the symbol "o" above a term indicates an odd integrand

whose integral vanishes (recall that I _ h(y) -=I_Y dYldY2dY3h(Y)).

Before proceding we should note that the convergence of the series

(2ypCp-C 2)of integrals resulting from the expansion of exp

exp(2ypCp-3) = (i+ 2ypEp+ _! ypCpyqEq+ ...)(1-¢ 2 + ...) , (3.38)

is assured by the presence of the factor exp(-y 2) in (3.36); that

is, the major contribution to the complete integral (3.36) and to

each of the integrals in the resulting series (3.37) comes from the

neighborhood of y = 0 • Hence, we need not be concerned about the

possible appearance of large y in the expansion (3.38). In

addition, the results of the expansion (3.37) agree exactly with

those found from the Taylor expansion (3.35). The remaining

integrations in (3.37) are all straightforward provided the "cross

section for momentum transfer," S(1)(ao y) , is a reasonably simple

function of aoY . For the moment we do not specify S(1) (aOY) ,

but following the notation of Burgers,32 let

_3/2Z(A,J ) e-y2y2J+ls (_) (aoY) ® e_y2y2j+3s(A)=_ =4_ s_ (aoY)_,o
o

(3.39a)

2 Z (1'2)

z - l-_ zi-Ci-_/i)
(3.39b)

4 z(1'3)

z,_:1-3-_ zi_,i)
(3.390)

I
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: l+5z_7z ,

^

Z - Z-- Z t

8 z (1'4)

z": i- 31--_zI-_7Y,I)

2 z (2'2)
z(2) = 1--

5z-_
4 Z(2'3)

z,(2) e 1

35 Zl['i_,I)

(3.39d)

(3.39e)

(3.39f)

(3.39g)

(3.39h)

_(2) £ z(2)_ z,(2) (3.39i)

8 Z(2'4) *

z"(2) £ i - 31--_ Zl_,l) " (3.39J)

From Appendix A we have, in conjunction with (3.39a),

2 _3/2 Z(£,j)
I_ e-y y2J-1 YPYq S(_)(aoY) _ --_ gpq (3.40&)I

and _-Y2,,2J+3v v v v q(£)(a vl
f d_ _ o "p'q'_s- " o'"

_3/2

= i_5 _pq6rs+_pr_qs+_ps_qr )z(£'j]

(3.40b)

Expressions (3,39a-d) are those used by Burgers; expressions

(3-39e-J) are peculiar to this dissertation. Also, Burgers attaches

the subscripts "st" to the quantities (3.39a-d) as well as to the

cross sections S(£)(ao y) ; we do not require this distinction inas-

much as we are working with partial collision integrals. The

quantities (3.39a-J) are tabulated in Appendix A for various
interparticle force laws.

I
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Then using (3.39a-c), (3.4Oa,b) to perform the remaining integrations

I in (3.37), we obtain, after collecting terms

I E6(m c,.)] #3_/2
s _ st = 3 CstZ(l'l){2ek- 2zEiEik +

m

I

I

2

+ 15_z'- 2Z)Ck_iRi + [z(l-E2)+ _ (7z'- 9z)]R k} •(3.41)

Substituting the definitions for

obtain

Elk and Ri , (3,22b,c), we

I
I
I

I
I

Ei (Pslk Ptik) +
C6(msCsk)] = _Ns_st{(utk- Usk)-2z _o _ + Ptst

a2 PS Pt } '

where we have defined a collision frequency for small E

i,i)__ p/2 c_t z_,_ _-_NtaoZ_ ,0
st _Nsa o

(3.42)

(3.42a)

I with Ns_st = Nt_ts (3.42b)

I

I

I

since -(£) _ _(_) (see (3.40a)) It should be mentioned that many
_st _ts

authors work with an "effective collision frequency for transfer of

momentum between ,species "s" and "t"
H i, m °" _

I

I
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I M = )(mt/me_st _st
(3.42c)

with

M M (3.42d)
_s_st = Pt_ts •

i
I

I

The collision frequencies (3.42a) are exhibited in Section 3.6 for

various interparticle force laws. It must be emphasized that this

form for the collision frequencies is only valid for the range

E << i ; in this range _st is, in general, te_erature dependent

and independent of the species' flow velocities. We shall see in

i

I

the next section that the converse is true for the range E >> i .

The results for the other three partial collision integrals are

taken from Appendices B and C,

I
I

I
I

i

i
i
I

Energy:

Pressul_:

_(lms c2)]sst = mo2_-Ns_st{__mt(%" _S )2+ 23-K(Tt-Ts)(I" 3_Z_2) +

Pt 2K
K2TsTt ,Psi_ _tlJ )+ _(__i)(Tt_Ts ) _

+2z 2 _icJ _ Ps - Pt -_
_ao ao

Pt 2K mgoT ] .
mo Ts_elej(Ps__ + "tlJ) + [2(I__)(Tt_Ts)+Z ei-z_ °_ _ V m_-

O

K2TsTt + qti) } (3.43)(qsi qti)_ 6z ,qsi

_s _t _ao3 Ei_-_s Pt

[6(m_c_c_)_ = 2_- mt
"_ _'_st mo Ns_st{V (Utp-Usp)(Utq'Usq)'

• [(l+3z(2))_jp6kq+

I
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+(l-z (2))6pq6jk]+K (Tt-T s)r(l-z _2 )6jk- 2z Ej_ +

2_T2t
_''_" 2

_%
[ (l_z3) 6Jp6kq_2z( cj _p¢kq) %_(Ptpq P_ s___)

Pt Ps

+

+{6Jp_kq[(2K/ao2)(Tt-Ts)(l-z+z3)-(3/4)mt (l-z(2)+ z(2)3)] +

P
}( s.._ ++_pEq_jk _(2K/a2)(Tt-Ts)(2z-z ')+mtz(2) _ Ptpq) _

Ps Pt

2 K2TsTt

- K z Uao3 [18(Ej_ki)¢+
4Ei_jk_(qsi + qti) +

Ps Pt

2 [2(Cj6ki)T,mo 21 a2mtz(2)) +

+ _00 _i6Jk(4K(Tt-Ts )(z' -7- z)-
- ao t Ps -_t (3.44)

Heat Flow: [8(_m c2c _)] = 1
...... st 20 mo

mt

----NsVst{25(Utk-Usk)_4_oK(Tt-Ts)Z(2)+

4K2TsTt 4K2 m2 2

+ 2 + --_ (Tt-Ts)2(l-Bz)+ (l-z)] +
ao %% _oa°

K2TsTt )2 Ps P_._t(

+ 80 _ao3msmt ej(-_s Psjk + p2 PtJk ) +

!
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I

5O

4 2
+ ioE-_ T -T )2(2+igz_21z,)+2K mt

moao3 t _ ao mo
(Tt-Ts)(3-4z-13z(2)+14z,(2))_

20K 2 mt2

iao3 ZTsTt+ _00
ao(5Z_Tz,_l+3z(2))_j(PsJk + PtJk) +

Ps Pt

_2%% _ mt (2) (_ P__a)_
+ 40 aomsmt [_Tt_Ts)(2_gz)+ __ (3+z )3ej Pt - Ps

O

_TsT t
144

-8 --/----aomsmt{56jk[2-_Kao(Tt_Ts)(llz_6+ } 3(13z'- -7-::z)) +

+ K ,____Z2mt(l_z(2) + 7 3(z(2)+ _ z))_+14Cj_k_4 _-(Tt-Ts)(4z . z)

0

+_({z(2)+4z)_}(%_i+%__)+
Ps Pt

+

+ 4{6 k[3OK2
J mo_ao (Tt-Ts)2(Tz'-5z-2+c2(189z"-350z'+171z))+

K mt (Tt_Ts)(2+5z(2)_7z,(2) + _ 3(17z,(2)_9z,,(2)_8z(2 ) ++ I0 a--Z_oo
O

+ 4z'- _--8z))+5o
K2TsT t m2

(z+ 57-2(z'-2z))+ _ E" (Tz
_ao o

'-5z-2 +

2 _TsT t
+ _ (63z"-98z'+45z+42z(2)))]+ 14Cj_k_lO "--'--4---(z'-2z) +

_ao

+_ (_t-%)_(_Tz"-_oz,+_ z)+
%%

mt_
mo a2 (Tt-Ts)(18z'-_ z +

0
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m2

+ 29z,(2)_llz(2)_18z,,(2))+ ""t (_(2)+9z,,_14z,+47__z_}(qs j qtJ) +
2mo PS - Pt

(4K2TsTt)2 Ps Pt

+ _ Cl8zCj_k- (15-19z_2)_jk_(-_ qsJ- -7 qtJ )} " (3.45)

_msmtao Ps Pt

In the partial pressure collision integral, (3.44), the symmetriza-

tion ( "'o)T, is with respect to the non-repeated indices, J, k .

The partial traceless pressure collision integral is of course given

by (3.44) minus two-thirds 6Jk times (3.43).

The results (3.42) - (3.45) are accurate to second order in

ci(i = 1,2,3) ; they simplify considerably once the interparticle

force law is given (i.e. once the "z's" are given). As will be

seen in the subsequent calculations of traceless pressures and heat

flows in Chapter V, the expressions (3.42) - (3.45) became quite

manageable for certain special systems (e.g. weakly ionized gas).

It should be noted that in connection with the fully ionized gas

system, Everett 33 claims an accuracy of results to third order in

Ei ; however, his results are only to third order in _i implicitly,

due to assumptions concerning the relation between e and the elec-

tron and ion traceless pressures and heat flows. Our results are

accurate to second order in ci explicStl_.

When the species' distribution functions are Maxwellian, the

traceless pressures and heat flows vanish identically, and the

I
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partial moment_mn and energy collision integrals (3.42), (3.43),

reduce to Tanenbaum' sII results

I

i

I
I

I
I
I

I

E6(msCsk)_ : UNs_st (Utk- Usk)
st

(3.46)

: 2 -_ mt "_ .e ,2+
mo Ns_st_T Qut-u s) _ K(Tt-Ts)(I- _ ze2)] .

(3.47)

Tanenbau_n's results are in terms of the effective collision

M given by (3.42c)frequency for transfer of msnentt_n, _st '

The collision integrals for a sin_ole gas or the "self-partial

collision integrals" are obtained simply by setting "t" = "s" (so

that °_= O) in (3.42) - (3.45)

[a(msCsk)_ = [_(½ msC2s)] = 0 (3.48)
SS SS

3 Z (2'2)

I 2,2)

m c -)] : z1"gf_,1)_ssqsk[_(2 l_ 20 1 Z(

i_ s s s_ st - _

I
,I

I,

(3.49)

(3.5o)

Finally, if we form the s_n over all species of the total

momenttm collision integrals, we see immediately from (3.42) that

z z [6(msCsk)_
s t st

0 , as must be the case for _ level of

accuracy in _ since the total momentum of the system cannot change

I

I



I
I

I

I
I

I
I

I

I

I

i
I

I

I
I

I

I

I

53

because of collisions (such a change is only possible through

external force fields, which are not involved in the collision

,
integrals). However, for the sum of the total random kinetic

energy collision integrals, we find from (3.43) that

z z [_(1 msC2s)_ _ O , in general. This is not surprising inasmuch
s t st

as the total rando m kinetic energy of the system can change because

of collisions; that is, part of the system's "ordered" kinetic

energy can be transformed into random kinetic energy. As a matter of

fact, for the special case of Maxwellian distribution functions,

(3.47), we have

m 2 mt ._ ÷ ,2 .. ,+ ÷ ,2
sZtZr6( sCs )]st= sZtz wNs_st _o _ut-Us) = s<tZ U_s_st_Ut-Us ) ,

s, t = 1,2,3, ... , which vanishes if and only if ut = us for all

•is, to

3.4 Evaluation of Collision Integrals for Large

Diffusion Mach Number.

In this section the partial collision integrals will be

evaluated for the limiting case _ _>_i (i.e. at least one of the

components _i is "much larger" than unity). The partial momentum

collision integral is again

Note that for any quantity Q which is conserved in a

collision, it can easily be shown frc_ the Boltzmann binary

collision operator, (2.21), that Z (_Q)st - 0 .
s,t

I
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Ca(msCsK-)_st= Cst f _ y YkS(1)(a°y)e-(Y'e){l+Eij (Yi-ei)(YJ-eJ) +

2 -_ -_ 2

+ Ri(Yl-ci)[1-_ (y-e) _} . (3.51)

Upon introducing the transformation

_- * di_ : dy ( a finite) ,

expression (3.51) becomes

[_(msCsk)] : Cst ] d_(e2+2Wp_p+ wa)i/2(ek + Wk)S(1)(a °
st

+.-_ _w2
e+w )e .

2
• {i + Eijwiw j+Riw i(l- _-w 2)} . (3.52)

We are now in a position to expand _6(msCsk)] in an "e-series,"
st

in a manner analogous to that for the case of _ <_ 1 ; in the

present case, however, we expand the term (E2+2WpEp+ W2) 1/2 and

retain only the hi_her order terms in e . We see that the

collision cross section in (3.52) is a function of E ; hence, in

order to perform the _-expansion we must specify the functional

dependence of S(_) upon e . For this purpose we consider those

cross sections S(_) which correspond to inverse power interparticle

force laws,

fst = Kst/rP ' 2 &p < _ (3.53a)
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S(£)(g) ='2_(Kst/_) "n/2 A£(p)g n , (n M O) (3.53b)

S(_)(g) =,_-_a212- '{i+(-i)_}/(_+i)_ , ("hard spheres,"

with n = -4/(p-l) .

p + - , n ÷ 0")

. (3.53c)

(3.53d)

The dimensionless cross section As(p), typically of order

unity, is tabulated by Chapman and Cowling 35 for £ = 1,2 for

certain values of p . The quantity "a" appearing in (3.53c)

is the stm of the radii of the colliding "hard spheres." The cross

sections S(1)(g) , S(2)(g) are given in Table 1 for various

interparticle force laws.

See reference C34S. Whenever we are dealing with force laws

of the type (3°53a) the results of any calculation will be for

n _ O ; the corresponding result for "hard spheres', can be obtained

by replacing 2_AI(P) by _a2 • 2 2, and 2_A2(P) by _a .

I
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TABLE I. COLLISION CROSS SECTIONS FOR VARIOUS FORCE LAWS

Force Law

Hard She_s

Maxwell Molecules

Kst/r5

_st/r 3

_st/r 7/3

* eset i

Coulomb, _-_-c° r2

n S(1)(g) S(2)(g)

0 _2 _ 2

l/2

-i 2W(Kst/W) Al(5)g -I

-2 2W(_st/U)Al(3)g -2

r

-3 2_ (<st/u )3/2A1(7/3) g-3

-4 2_ (eset/4_ Eo_)2Al(2)g -4

, ,. l J

A2(5) S(1)

(g)

A2(3) S(
A_-_) l)(g)

i i

A2(7/3)

Al_) S(1)(g)

i i

A2(2) S(1)

Ai-_) (g)

I

E
O

is the permittivlty of free space.

In terms of E and _ the collision cross sections

_ecome

_) _
s( (aol_+wI)

n

"2" n 2 )n/2
= 2_(Kst/U) A_(P)ao(E ÷2WpEp+ w2

(3.53b)

(3.54)

I
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so that (3.52) bec_nes

[g(msCsk)]
st

, n+l:_£1 2w _ 2

E

__n+l 2

2( Ck+Wk)e-W {l+Eijwiwj

2
+ R_wi_ (i- [w 2)} (3.55)

where C' _ 2_(<st/U) -n/2 Al(P)a _ Cst (3.56)st

We shall evaluate the integral (3.55) in such a manner that all

terms of zero or higher order in

are retained (note that the factor

which occur in the integrand

n+l
c does not enter into this

consideration). Then expanding the binomial in the integrand of

(3.55), multiplying out, retaining only those terms of zero or

higher order in e , and performing the integration, we obtain

[&(msCsk)]
st

C_tzn+if d_ e-w2
g

•"](_k+ Wk){1+

+ E_wiwj+Riwi(1-_w2)_

O

= Cst En+l Idw e-W2{gk+_ijwiwj+_iwi(l _ w2) +

o o 2

+wk+E_wiwjwk÷Riw±wk(1-_w2>+

_o o+ (n+l) _Wp+ EijwiWjWp+ Riwiwp(1- 2)]}
g

+

I
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or, [_(msCsk)] = C' n+l _3/2
st st E Ek (3.57)

where terms with overscore "o" again indicate odd integrands

whose integrals vanish. We note that the convergence of the series

of integrals resulting from the expansion of the binomial

is assured by the fact that the major contribution to the integrals

comes from a neighborhood of w = 0 , due to the presence of the

factor exp(-w 2) in the integrands; hence, we need not be concerned

about the appearance of large w in the expansion (3.58), which is,

in general, only valid for

wE 22

(2 PP+2 _)
E E

< 1.

Rewriting (3.57) we have

[_(msCsk)] = _Ns_st(Utk-Usk)
St

(3.59)

where we have defined a collision frequency for large E ,

n+l

_st _ 2_(<st/u)-n/2 Al(P)Ntlut-Us I > 0 , (3.59a)

with NsVst =Nt_ts . (3.59b)
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I

I

I _stM= (_/mo)Vs t

The "effective collision frequency for transfer of mcmentt_n between

species "s" and "t" "is (cf. (3.42c,d)

(3.59c)

M M
with PsVst = PtVts . (3.59d)

The collision frequency (3.59a) is exhibited in Section 3.6 for

various interparticle force laws. This expression for the collision

frequency is of course only valid for the range _ >> 1 ; in this

range Vst is, in general, dependent upon the difference in species'

flow velocities and independent of species' temperatures. This is

to be compared with the situation in Section 3.3 where the collision

I
I

I
I

i
I

I

frequency was shown to be temperature dependent and independent of

flow velocities (see 3.42a). This is one example of the striking

difference in form of the partial collision integrals between the

two extreme cases c << 1 and _ >> 1 .

We note that, according to (3o59), the partial momentt_n

collision integral vanishes when _k = 0 ; this of course simply

reflects the neglectance of the lower order terms in c - - the

integral does not, in general, vanish when _k = 0 (except for

'%_xwell molecules," c. f. Section 3.5). Such a case, however, is

pathological, and in any event we have for the vector partial

momentum collision integral

I

I
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[_(m_c_)] = uNs_st(Ut-u s) ,
_st

(3.6o)

M_ich cannot vanish inasmuch as ut # us . We note from this result

that _ _ _ _ ÷
_(msCs)S is in the direction of e - (ut-Us)/a O • to this

st

level of accuracy, and does not involve the traceless pressures or

heat flows. This is to be contrasted with the result of Section

3.3, equation (3°42), where [ (msCs)S is in the direction of
st

only if the species' traceless pressures and heat flows vanish.

Bringing forth the results frcm Appendices B and C for the

other three partial collision integrals we have

_her_y -

_SS_:

[_(i msC2s)S = (_/mo)Ns_st{m t(_t__s)2+ (n+4)K(Tt_Ts) +
st

+ (n+l)(Eicj/E2)[(n+l)(_/2)(Pt__tl + Psi]) +
PS

(_+ _ ._____
Nt N"s

(3.61)

_(m c .c _)] (_/mo)Ns_st mt A2
s sj sK st = {-_-_4-3 _l)(Utj-Usj)(_k-Us_

A2 ÷__ 2
+ gJk ATI (tltus) _+2K(Tt-Ts)[_Jk+ _ (n+l)_ +

c

4K2TsTt

+ 2 [_Jp_kq $(n+l) (_kqcpEj/_2)t] ( "'"
_ao

I
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Pt ao

2 _ 2K _ll)mt] +
+ 2(n+l)(_kqEP_J/_ )[ _o (Tt-Ts)+(l- } A2

A2

Pt Ps

Heat Flow: _(} m-C2Cs ,-)] = (w/m2o)Ns_'t ((utk'usk)_5_2 (Tt-TB)2 +
' _ _ _ st _ ao

2 A2

+ _ TsTt mgo+ mtK(Tt_Ts)(8+3 n_ h (n+6))+ mt 2 (8¢2(1_ ) +A1 _'- a° 2-AI

ao
A2 (2K2TsTt) 2 Ps P__t

2n2+ 12n+ 15- _i (n+l)(n+6))]+ --2 3 -- El(--_ Psik+ p2t Ptik)
+ _ ao Ps

A2

+ {6jkaoai_ 4a_o2(Tt-Ts)2+2mt % (Tt-Ts)(n+3 + _ _ll) +a o

A2

A2 _t K__ (Tt_Ts)( l_ _ _ll)

O

+ _ (n+l- _)]}(_ + Pt__)+ 2K2TsTt {_jkCi[4-_ (Tt-_s) +
n PS Pt - _ao ao

A2

+ mt(3+n(l+ _l))]+2(n+l)_k(_i_J/_2)mt(l- _ A1 Pt - Ps ')+

A2

+ 2 _Ts Tt 5 _,14i n _
Y _ { ikL-_ (Tt-Ts)(2n+17)+ mt(n+l)(n+8+(l+ _) _i )

_a9 ao

+

I
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K (Tt_Ts)+2mt(2n+5 - _ (n+6) _--21)]}-A2 _+2(n+l)(Eic_2)[18_o- I0_ 1

_t i K2o (qsi + )_ _. {_[@ (Tt_Ts)2(2n+17) +
Ps a_oo .

K A2

+ _ _o (Tt-Ts)(2(n+l)(n+8)+((n+l)(n+2)-20)_i ) +

A2 K2

+ _(5+(n+l)(n+6)(l- 2_ _I))_+(n+I)(EIE_E2)_36 a_O (Tt-Ts)2 +

+ _ _K (Tt_Ts)(4(2n+5)+(lln+54) _I)+A2

O

+ _(2n2+lOn+7+(2n2+ _ n+9) _)J}( hiOs qti.)pt +

+
4 (K2TsTt)2 " Pt P_

[_ik (2n+l?)+9(n+l) (EiE_ E2)] (--_qti" _ qsi )}

5w2a4 Pt Ps

(3.63)

An interesting observation can be made concerning the influence

of the traceless pressures and heat flows upon the partial collision

integrals. Comparing the results (3.60) - (3.63) with those of

Section 3.3, (3.42) - (3.45), we see that, in general, the traceless

pressures and heat flows have considerably less influence upon any

of the partial collision integrals for the range E >_ 1 as against

the range c <_ 1 (this observation is of course with reference to

the order of the E-coefflcients which appear with the traceless

I
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N
pressure and heat flow terms). This decreased influence of the

higher order velocity moments can be seen more clearly if we lower

our level of accuracy by discarding all zero order terms involving

the traceless pressures and heat flows; the expressions (3.60) -

(3,63) are then drastically simplified to

Momentum: C6(msC_s)_st= uNs_st(_-Us) (3.64)

_ergy: c6(lmsc2s) ] 2(_/mo)Ns_st{_-_t _ + 2 "st = (ut-Us ) + _) K(Tt-T s)} .

(3.65)

Pressure: L_(m c .c _)] mt A2
S SJ SK st = (_/m°)Ns_st{2--_4-3 _l )(utj-usj)(utk-usk)+

+6Jk ¢_-us)_]+2K(Tt-Ts )C_Jk+( eJe_ E2)(n+l)_ }
(3.66)

K2

Heat Flow: [_(1 msCsCsk)]st2 = (_/m2)Ns_st{(Utk_Usk)[5 _ (Tt_Ts)2 +

o

A2

K2 mo +mtK(Tt_Ts)(8+3n_(n+6) _i ) ++5-'_TsT t _--
ao

The case of "Maxwell molecules" is an exception; for this

force law the partial collision integrals have the same functional

form for all e m c. f. Section 3.5.

I



I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

64

2

mt 2(83(i_ ___l)+2n2+12n+15_(n+l) (n+6) ___)] ++ _- ao

(2_TsTt)2 °s Pt . ""5 "4K2
+ 2 3 El(--2 Psik + Ptlk ) +"-_ i jkaoEiL T (Tt-Ts) 2 +

ao Ps Pt o

K n A2

+ Z_ y (Tt-T s)(n + 3 + [_i ) +
O

A2 K A2

+ m2(n+2)(l - 3 _ii)]+ aoak(CiEj/3)(n+l)[4m t Y (Tt_Ts)(l_ _ _i) +
O

+ 4(n+l_ _ _i)] }(Ps__+ PtiJ)+ 2K2TsTt {6Jkai[ _ (Tt_Ts) +
Ps °t _ao a

0

+_(3+(i+ 2_l)n)S+2(n+l)Ek(_iEj/_2)_(l-_l)} Pt - Ps "

(3.67)

We thus see from (3.64) - (3.67) that, to this level of approximation,

the partial collision integrals, with the exception of the partial

heat flow collision integral (3.67), are the results corresponding

to the case where the species' distribution functions are Maxwellian

(expressions (3o64), (3.65) are identical to Tanenbat_n's results II) ;

that is, for the limiting case E >> 1 , the non-Maxwellian or

"non-equilibrlum" (cf. Section 2.4) parts of the species distribution

functions have little effect upon the partial collision integrals.

Finally, the cc_xnents at the end of Section 3.3 concerning the

sums over all species of the total collision integrals apply here

79-

also; that is, Z Z [_(mCsk)]_ = 0 , Z _, [6(omsC;)J. ,_ _ # 0 , in
s _ st s t st

I
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general.

3.5 Exact Evaluation of Collision Integrals for the

Maxwell Molecule Force Law

For the case where the particles obey the "Maxwell molecule"

force law,

fst = _st/r5 ' (i.e. P = 5 , n = -i) (3.68)

the partial collision integrals can be calculated exactly (within

the limitations of the BoltmTaun binary collision operator), without

any knowledge of the species' distribution functions. In this

section we shall give the details of the calculations of all four

partial collision integrals, for the Interparticle force law

(3.68).

From (3.11) we have

[_,(msCsk)] = _ I/ FsFtlggkS(1)(g)d_d_l ,
st

(3.69)

where, from Table I,

S(1) (g)Jn = -1

1/2

= 2_(Kst/W) Al(5)g -I , (3.70)

so that

[% (msCsk)
" st

Kst_)l/2Al(5) _= 2_( II FsFtlgkdVdVl (3.71)
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Recalling that g - Vl-V , we then have

[_(mscsk)] = 2_(Kst_)I/2 AI(5) II FsFtl(Vlk- Vk)dV÷d_l
st

2_(Kst_) I/2 Al(5)[NsNtUtk- NtNsUsk ] ,

or, [_CmsCsk)] = _NS_st(Utk-Usk ) ,
st

(3.72)

where _st _ 2_ AI(5)(Kst/U)I/2Nt (3.72a)

is the cqllision frequency for Maxwell molecules which is

independent of the flow velocities and temperatures (cf. (3.42a),

(3.59a)). In obtaining (3.72) we have sin_ply invoked the definitions

for Ns, us , (2.3), (2.5) •

For the partial pressure collision integral we have from

Appendix B

_ _a st
= u II FsFtlg{[gk(Coj-Usj)+ gj (Cok-Usk)]S (I) (g) -

mt g26 IS (2) _ +
- _oo [3gJgk" jk (g) }dVdVl "

(3.73)

From Table i,

8(2)(g_n= -I = 2_(Kst/W)I/2 A2 (5)g-I " (3.74)

l
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Substituting (3.70) and (3.74) into (3.73) gives us

[_(mscsjcsk)] = 2_(gst_)i/211 FsFti{[gk(Coj-Usj)+g j (Cok-Usk)]Al(5) -
st

- (_/_o)C_j_-g2_jQA2(5)}a_1 (3.75)

It will prove convenient to express all velocities in (3.75) in terms

of the random velocities, Cs, ct ; we have

= vI- _ = (ct÷ut)-(Cs+Us) = ct-Cs + aoa (3.76a)

and

so that

+ __ (Cs+Us)+(mt/mo)(ct+ut)-UsCo-U s (ms/m O) ÷ _ ÷ + ÷

- (ms/mo)Cs+%/mo)Ct+<_t/mo)ao_,

0

gk (Coj -Usj ) = (ms/m o)osJCtk+ (mt/mo)ctj Ctk+

0

+ (mt/mo)aoCtkCj-(ms/mo)Csj csk -

0 0

- (mt/mo)CskCtj-(mt/mo)aoejCsk +

O O

+ (ms/mo)aoEkCsj+(mt/mo)aoEkCtj +

2

+ (mt/mo)ao_j¢ k ,

(3.76b)

(3.76c)

i g2_jk 3(ctj Ctk.cskotj o oand 3gjg k- = +ao_kCtj-CsjCtk+OsjCsk -

I
0 O

o +aoCjCtk_ao_jCsk+a2o_j_k ) .- aoEkCsj

i

I
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- (c +c +a (3.76d)

where terms overscored with "o" indicate integrands whose integrals

I over dvdv I vanish due to the fact that <c _ = <ct>s s t

Substituting (3.76c,d) into (3.75) gives us

1/2
[6(m c _c ,)] = 2_(Kst;_)

s sj SK st

I

I

=0 .

ff FsFtl {2Al(5)[(mt/mo)CtjCtk-

! - (ms/mo)Csj Csk+(mt/mo )a2o_j_-(mt/2mo)A2(5)[ 3(ctjctk +

i

I

2 2 2 2 2_ .
+ _sJ Csk+aoSj _k)-_Jk (ct+cs+ao_ "]}dvClVl

(3.77)

Performing the remaining integrations by reference to the definitions

for Ns, Ts, PsJk' (2.3), (2.8), (2.13), and rearranging, we obtain

I
I
I

I

[a(m c .c ,)]
' s sJ sg st

; ("/mo)"s%t{½A2(5) 26Jk mt(_t-u s) +
.L

A2(5)
+ 2[1- _ Al(5)]mt(utj'Usj)(Utk-Usk)+6jk2K(Tt-Ts) +

_ _)_ 3 mt { ; oNt s __ Pt °8
(3.78)

I

i

The partial energy cgllisio n integra ! is given by one-half the trace

of (3.78),

I

I
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[6(lm c2)] 2(_/mo)NsVst{___t _ + 2
s s st = (ut-Us) + 2_ K(Tt-Ts)} "

(3.79)

For the partial heat flow collision integral we have from

Appendix C

2 _ ÷ 2 (i)
+ gk(g2(mt/mo ) +(Co-U s) )IS (g) +

+ [(mt/mo)g2(Cok-Usk)-3(mt/mo )(Coi-Usi)gig_S(2)(g) }d_d_ 1 •

(3.80)

Substituting (3.70), (3.74), (3.76a,b) into (3.80), multiplying out,

and retaining only those terms which do not involve <c> , <ct> tS S

(these of course vanish), we obtain, after collecting ter_s

[_(½ msC2C _'_J
s sK" st

= _(_stW) I/2 ,fI
FsFtl 2 _ 2+m2, A +

2 {-CsCsk[(_ns t _ i
m
o

+ 2msmtA2]+^ 2 m2(2Al_A2)_CsiCskaoei[2(ms_mt)2A1 +_ctctM t

+ (msmt-_)A2J+4ctictkaom2Si(2Ai-A 2) +

2 2 + 2+ A
+ Csao_k[(mt-m s) A1 (mt-3msm t) 2] +

22 22 ++
+ 2ctntcaoCk(2Ai-A2)+2ao_ Ck(2Ai-A 2) }dvdv I . (3.81)

I
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Frcm the definitions for Ns, Ts, PsJk ' qs ' (2.3), (2.8), (2.13) ,

(2.16) , the remaining integrations yield

C6(i msCsCsk)_t2 = UNsVst{Y(mt/mo)2(_t._s)2(utk_Usk) +

+ 5K(_k-Usk)[y(_/m2o )(Tt-Ts)+(I/2ms)Ts_ +

+ (_i_Usi)[2y(_/mo)2(Psik_ + __r__)+(_z/.wr_Ptik- -_,A2 -4)+1) Psik] +
_t mo _i PS

+ 2_(mt/_o)2(%k %-_k)+(6pC- 0_ _o-3-2
_---A2 _ } (3.82)
mo_)p _

where 7 e 2-A2(5)/AI(5) . (3.82a)

It is important to note that in all the preceding calculations

no knowledge of the species' distribution functions has been

asstmed; the partial collision integrals have been evaluated using

only the definitions in Section 2.1 for the first thirteen velocity

moments Ns, us , Ts (or Ps ) ' PsJk ' qs ' Furthermore, since

the calculations are exact, the results are valid for all diffusion

Mach number, _ _ lut-Usl/a o .

The highest order mcments occurring in the exact results are

the traceless pressures and heat flows, and these appear linearly.

Since our "thirteen moment approximations" to the species'

distribution functions (2.41) are accurate "up to" these moments,

!
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we expect the approximate results of sections 3.3, 3.4 to agree,

for the case of Maxwell molecules, with the exact results of this

section, provided only that the former are of sufficient accuracy

,
in E . This is indeed the case as can easily be seen by

substituting the appropriate values for the "z" integrals from

Appendix A into the results for E << 1 , (3.42) - (3.45), and

n = -i into the results for c >> 1 , (3.60) - (3.63) •

Due to the fact that the results for Maxwell molecules are

independent of the species' distribution functions, it seems

appropriate to employ this force law as a test for accuracy of any

calculations based upon asstm_ptions concerning the species'

distribution functions. We have just done this for the approximate

results of Sections 3.3, 3.4. We shall now examine the accuracy of

the calculations made by Burgers 13 and by Lyman, 14 in reference to

the exact Maxwell molecule results; we shall show that their

calculations do not give the correct results for Maxwell molecules.

The fact that the exact Maxwell molecule results contain no

products of traceless pressures and/or heat flows assures us that

the discarding of the ¢_¢_ term (cf. (2.48))in the approximate

calculations will have n8 Searing upon the accuracy of the

approximate results insofar as the Maxwell molecule force law is
concerned.

In the approximate result for the partial heat flow collision
integral for e << 1 , (3.45), there is no third order term in E

as there is in the exact calculation for Maxwell molecules, (3.82);

this simply reflects the level of accuracy in the approximate
calculation, i.e. to second order in c .

!
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12

The calculations of Burgers and Lyman are somewhat similar to ours

with the very important difference that they are based upon an

expansion of the species' distribution function in terms of a

random velocity c
S

which is relative to the flow velocity of the

mixture; that is,

F' = F (°)'s s (i+_)=

-o_2/a_2
Nse

i+ ' _'
_3/2a,3 [ ¢s( s)]

8

, (3.83a)

where = v-u (3.83b)

- (__s_s)_ _s
S S

(3.83c)

- ' and all higherand where the "s" species' temperature, Ts ,

+,
velocity moments are defined relative to cs , e.g.

3 KT' : ( i 2>s _ msC_
S

(3.83d)

In Burgers' expansion, a '2
S _ 2KT'/m s , where T' - (_ N T')/Z Ns ,

S SS S

so that only small temperature differences are considered; in

Lyman's expansion, as2 = 2KTs/m s .

Let us consider the e_act Maxwell molecule result for the

partial ener_ collision integral, [_(} msCs2)_ . Introducing
st

the diffusion velocity of species "s"

I
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Ws(x,t)- us-u , (3.84)

-)_t -)" _" -'+ _ " -_"
we have cs - v-u- (V-Us)+W s = _s s (3.85)

where cs is the random velocity used in this dissertation, (2.6).

We can then express [6(} msCs2)_ in terms of our partial
st

collision integrals; we find from (3.85),

[6(21__msCs2]_ = [6(21_msC2s)+_(} 2 ÷msWs)+6(msWs'_s)]
st st

or, [6(}msCs2)] -[_(}m c2)_JWs.[_(ms_s) _ (3.86)
st s s st

by reason of (2.25a,b). Substituting the exact Maxwell molecule

results (3.72), (3.79) into (3.86), we obtain

C6(}msCs2)] = 2(U/mo)Ns_st { mt + + 2+
st T (b-Us) 3 K(Tt_Ts) +

+ (mo/2)W s" (ut-u s) } • (3.87)

The temperatures Ts, T' are related as followsS

3 KT s = < _imsCs2 >s= <_ mscs msW -msWs'Cs s•

= _KT' s -ylmsWs2 (3.88)

I
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since < c'> = < Cs+_ > -W . Substituting (3.88) into (3.87),
S s S s S

recognizing from (3.84) that ut-u s - Wt-W s , and collecting terms,

we obtain finally

[a(½ msCs2)]
st

= 2(_/mo)Ns_st{ 23-K(T'-T')+_s ½ (ms-mt)Ws'Wt} " (3.89)

The result obtained by specializing Burger's 36 or Lyman's 37

calculation to the case of Maxwell molecules is

[_(_--msCs2)_st-- 2(_/mo)Ns_st{ 23-K(T_-Ts)} .
(3.90)

Comparison of (3.89), (3.90) shows that Burger's result is missing

a term proportional to

Ws'W t = (_s-_).(-_) . (3.91)

This _s a "higher order" ter_ inasmuch as the expansion (3.83a) is

only valid for "small" + + "small" that 38lUs-U I , in the sense

÷ ' (3.92)lus-U ! << as •

The absence of the higher order term (3.91) from Burger's result is

due to the fact that Ws appears linearly in the expansion (3.83a),

occurring in the non-Maxwellian or perturbation part _'(_') and
-S- S- '
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thus because the product "s'¢'(_')¢t(_t)s is neglected in the

calculation of the collision integrals, there can be no terms in

the results higher than first order in the diffusion velocities,

W .
S

Similar discrepancies can of course be exhibited for the

partial pressure and heat flow integrals; in the case of the partial

momentu_n collision integrals, the diffusion velocities enter the

exact Maxwell molecule result linearly so that no discrepancy

arises o

We thus see that the results of the expansion (3.83a,b,c) are

quite limited in accuracy ccmpared to the results of our expansion

(2.41), (2.6); we pay a price, however, in the ccmplexity of the

results.

Before leaving this section we should point out that the

Maxwell molecule force law is not merely an academic one; it has

been used as a realistic force model in the scattering of electrons

by neutral atoms. 39

3.6 The Collision Frequencies as Functions

of the Diffusion Mach Nt_nber

In this section we shall exhibit the collision frequencies

introduced in Sections 3.3, 3.4, 3.5, as explicit functions of the

diffusion Mach number c for various inverse power interparticle

force laws.

I



I
76

I
Recall from Section 3.3, equation (3.42a), that for E << 1

I the collision frequency is given by

I Vst = (2/3)NtaoZ(1,1)
(3.93)

I

I
I

I
I

Substituting the expression for Z(I'I) from Appendix A, we have

for inverse power interparticle force laws, fst = <st/rP '

n = -4/(p-l) ,

Vst

(8/3)_ r(3+n/2)Al(P)(Kst/_)-n/2Nt an+l , n # O

(3.94)

a2Ntao , n = 0 , ("hard spheres") .(8/3)/_-_

I From Section 3.4, equation (3.59a), we have for E >> i ,

I

I

I

I

Vst
i ÷ _ n+l

2#(<st/_)-n/2Al(P)Ntlut-Usl , n # 0

2 -_ -_

_o Ntlut-u sl , n = 0 , ("hard spheres") .

(3.95)

YlIn (3.94), (3.95), the results for "hard spheres, n : 0 , are

obtained from the results for n # 0 in accordance with the foot-

I

I

note on page 55.

From (3.94), (3.95), we have, for all values of n , the

normalized collision frequency

I

I
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Vst = _ (3.96)3/_ n+l
4F(3+n/2)E , E >> 1 ,

where the normalization is with respect to the small diffusion Mach

nt_nber collision frequency , (3.94). Expression (3°96) is evaluated

!
below for various interparticle force laws

I {i , _<<I

%

hard spheres, p ÷ - , n = O : _st = (3.96a)

I (3_/8)e , e >> 1

Maxwell molecules, P=5, n= -i: _st = 1 for al__!lc (3.96b)

i i , _<<I

I P=3, n= -2 _ { '
• Vst = (3.96c)

(3_'_/4)E-I , e >> 1

I
I

I
I

I

i

[ i , _ << i

P=7/3, n= -3: _st = I (3.96d)
(3/2)E -2 , E >> 1

Coulomb,

fl , E <<i

p=2, n= -4: Vst =_ (3.96e)

L(3_/4)e -3 , E >> 1 .

Note that, as pointed out in Section 3.5,

of flow velocities and temperatures for the case
molecule force law.

Vst is independent
of the Maxwell

!
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The results (3.96a-e) are exhibited in the log-log plot of

Figure 2o

:b

Vst

io l

O.!--

o.ol .... l
0.1 io0 i0

2
e

Hard spheres
(n=0)

Maxwell molecules

f_r -5

(n= -i)

f_r-3

(n= -2)

fer-7/3

(n= -3)

Coulomb

fer -2

(n= -4)

FIG. 2 COLLISION FREQUENCY AS A FUNCTION OF

DIFFUSION MACH NUMBER FOR INVERSE-

POWER INTERPARTICLE FORCE LAWS.

Inspection of Figure 2 shows that, in comparison with the

%

Maxwell molecule results, Vst either increases or decreases with

increasing _ depending upon whether the power p in the force law

is greater than or less than 5. The [explanation for this is fairly

simple; first, from (3.53b) we see that, while S(1)(g) decreases

with increasing g for all possible values of p , 2 __p < ® , it

decreases much faster for long-range (small p , large Inl) forces

than for short° Tanenbaum ll shows that
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2 3 2(i+c2<g>= a );

hence, in an "average sense" g increases with increasing _ .

Thus, the "average" cross section falls off with increasing E ,

but at a rate which increases with the range of the interparticle

force law. Since the collision frequencies depend strongly upon

S(1) (g) , it follows that a plot of Vst as a function of increasing

, Figure 2, when con_oared with the Maxwell molecule results

(P=5 , n= -1), should increase for shorter-range forces (larger p ,

smaller Inl ) and decrease for longer-range forces.
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KINETIC MODELS FOR THE COLLISION TERM -o_-(":")collisions

Up to now we have en_oloyed the full Boltzmann binary collision

model for the term (_F/_t)coll" the average tlme-rate of change of

the distribution function due to collisions. We have seen that the

calculation of the ensuing collision integrals, IQ(_F/_t)coll d_

has been tedious and the results quite cumbersome even after several

simplifying asstmptions. The origin of the complexity lies in the

fact that the Boltzmann collision operator takes into account the

geometry of each possible binary collision and the calculation of

the accompanying collision integrals requires knowledge of the

distribution functions (except for the case of Maxwell molecules)°

In this chapter we present kinetic models (for general gas

mixtures) as substitutes for the Boltzmann collision operator; the

models possess relatively simple mathematical forms, but duplicate

several important properties of the Boltzmann operator. The models

do not involve the geometry of the individual collisions; they are

essentially statistical averages over all possible collisions with

the interparticle force law occurring implicitly in a phenomeno-

logical collision frequency.

Generally speaking, such models are not used for the calculation

8O

I
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of transport quantities (e.g. coefficients of viscosity and thermal

conductivity); more often, they are substituted for the Boltzmann

operator in the Boltzmann equation which is then solved for the

distribution function, either directly or by taking moments. How-

ever, in order to be reasonable substitutes, the models must be able

to reproduce, at least in part, the properties of the Boltzmann

operator° The models must conserve the species mass, total momentum,

and total energy, in order to be physically acceptable; furthermore,

the collision integrals of the Boltzmann operator should be

reproduced as nearly as possible, including the pressure and heat

flow integrals. It is with these considerations that this chapter

deals; the models presented are constructed in such a manner so as

to make the calculation of the partial collision integrals possible

without explicit knowledge of the distribution functions.

The existing kinetic models and their collision integrals are

appealing in their simplicity; however, this simplicity results in

a shortcoming to a certain extent inasmuch as certain important

results of the Boltzmann operator cannot be reproduced.

The first two models we shall analyze are the Gross-Krook 18

and Sirovich modelsl9; we shall find that these models are in

serious disagreement with regard to the partial pressure and heat

flow collision integrals of the Boltzmann operator, both in the

form of their results, and in the magnitude of certain terms when

there are larg@ differences in the species' masses. We shall next

I
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introduce two new models which overcome this difficu_lty to different

degrees. The first is a revised for_n of the Sirovich model, while

the second is based upon a velocity-space expansion of the collision

term (6F/6t) coll. and reproduces all four partial collision

integrals of the Boltzmann operator exactl_v.

1 _he Gross-Krook Model

The Gross-Krook model 18 as originally presented was for a

binary gas mixture; the extension to a system composed of an

arbitrary number of species is straightforward. One simply lets

( _Fa/_t )collo = z ( 6Fa/_t )ab
b

coll.

= - Z v'_(F - Cab )
b ao a

(4.1)

where "a" and "b" are species subscripts,

collision frequency between species "a" and

,
velocity independent, and

v' is the model's
ab

"b" taken to be

-(_-_ab) 2/a 2

_ab - Na(_-3/2a-ab3)e ab, aab2 _= 2K Tab/m a (4.2a)

SCab d_ = Na , Taa = Ta , Uaa = ua • (4.2b)

If. V'ab = Yah(V) , then, in general, the species' mass cannot

be conserved, i.eo [_(ma)]ab # 0 .

I
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The self-collision term is Just the Krook model 40 for a simple gas

(_Fa/6t)aa = -_' (F - _(o)) (4.3a)aa a _a

coll.

where F(°)-a Caa " (4.3b)

The parameters in the model (4.1) are the "mixed" flow velocity

Uab , the "mixed" ten_perature Tab , and the model's collision

' constituting a total of five scalar parameters.frequency vab ,

The number of parameters is thus more than sufficient to allow the

model to reproduce exactly the partial momentum and energy collision

integrals of the Boltzmann binary collision operator for the most

general type of problem. However, in order to obtain relatively

simple expressions for the parameters, we shall only require the

model (4.1) to reproduce these integrals for the case where the

species' distribution functions are Maxwellian for _ _ i (general

central force laws) and for _ _ i (general inverse power force

laws); the restrictions on the distribution functions and _ will

be removed for the Maxwell molecule force law. Once this is done

the requirements for conservation of total momentum and energy are

automatically satisfied by the model.

We see from (4ol), (4o2b) that the model automatically conserves

the species' mass

I
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[6(ma)]ab = I ma(6Fa/6t)ab d_ = -ma_ab /(Fa-¢ab)d_

coll.

_--- w . V

ma_ab(N a- Na) = 0 , (4.4)

The partial momentum and energy collision integrals of the

Boltzmann operator for Maxwellian distribution functions and-e << 1

are given by (3.46), (3.47), respectively,

[ (maCa)]ab --NaVaho( %- ua) (4.5a)

[6(½ 2 -+maCa)]ab = 2Na_ab(_/mo)[ 3 K(T b- Ta)+ _- (ub- _a )2] . (4.5b)

Note that (4.5a,b) are exact for Maxwell molecules (see (3.72),

(3°79)). The corresponding integrals of the Gross-Krook model are

[6(maCa)lab=NabOb_(_ab-ca) (4.6a)

T (uab- ua) . (4.6b)

Equating (4.5a) to (4o6a), and (4o5b) to (4.6b) gives us

U+ab = _ab(mb/mo)(%- Ua)+ ua (4.7a)

Ta b = Ta+ 2mab(1_/mc_(Tb_Ta)+mab(2_mab)( 2/3Kma)(_b_ Ua)+2 (4.7b)

where _ab =-_ -/_'- = _ 'ao ao ba/_ba e _ba ' (4.8)
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= v' due to the fact that thesince Na_ab = NbVba and NaaoV'. Nb ba '

total number of collisions per unit time per unit volume of "a"

particles with "b" particles is equal to the total number of

collisions per unit time per unit volume of "b" particles with

"a" particles.

' in (4°1) with the actual collisionl__ffwe identify Vab

frequency, Vab , then _ab = i , and (4.7a,b) become, respectively,

U+ab -- (maUa + mbUb)/m o (4.9a)

Tab = Ta+ 2(_/mo)(Tb- Ta)+ (_2/3Kma)(_b- _a )2 . (4o9b)

Note that for a = b , we have the trivial results Uab = ua ,

Tab = T a , independent of the value of _aa (see (4.7a,b)). The

results (4°9a,b) agree with those of Hame141'42 and Morse 43 although

the approaches used by these authors differ considerably fra'nours

and involve assun_otions which we have not used.

Although this identification of collision frequencies is

N

Hamel's analysis is based exclusively upon the Maxwell
molecule force law and involves the truncation of the force law

range; in addition, a function of (ma/m b) is "determined" by finding

the value t..,_ the function a_(ma/m b) ÷ O_ Morse's work apparently

involves the _ priori ass_nption that uab _ Uba ; it is easily shown

from (4.7a) that Uab = Uba if and only if _ab = 1 , for a # b .

I
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appealing from an intuitive point of view, it must be emphasized

that _ab is essentially a "free" parameter° In any event, the

Gross-Krook model given by (4ol), (4o2a,b), (4o7a,b) now reproduces

the partial momentum and energy collision integrals of the Boltzmann

operator for the case of Maxwellian distribution functions, e << 1 ,

and general central force laws, with the restrictions on the

distribution functions and _ removed for the Maxwell molecaie

force law; the usual conservation laws are consequently satisfied

automatically. The free parameter, mab ' can be adjusted, if

desired, to bring the model's partial pressure andt/or heat flow

collision integrals into closer agreement with those of the Bo!tzmann

operator.

From (3o60),(3o61)we see that for E __ 1 and Maxwellian

distribution functions, the partial momentum and energy collision

integrals have the same form as (4o5a), (4_51o), respectively, with

the term (3/2)K(Tb-T a) in (4o5b) replaced by (n+4)2K(Tb-Ta) ;

the collision frequencies are of course different for the two ranges

<< 1 and c >_ 1 (see (3o42a), (3o59a))o Hence, the results for

>> 1 can be obtained directly from (4o7a,b), (4°8), simply by

multiplying the term involving (Tb-T a) in (4o7b) by (n+4)/3 ,

and using (3o59a) for _ab "

The partial pressure collision integral of the Boltzmann

operator is, for Maxwell molecules (cfo (3°78)), exactly

i
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= A1-----_)Ojk_mb/mo# Pa_Ub-Ua J +

A2(5) 2 ÷ ÷ ÷ ÷

+ 211-i_- Al--_)](mb/m o) Oa(Ub-Ua)j(Ub-Ua)k+2_jk(l_/mo)NaK(Tb-Ta)+

A2(5) A2(5) mb] (iJmo)Pajk}
+[2- 23-Al-_)](_/mo)(Na/Nb)Pbjk- [2+ 23-AI--_) ma

(4.10)

The corresponding integral of the Gross-Krook model is

= + + " "+ _ " 6 N " ,
[6(maCajCak)]ab vab[Pa(Uab-Ua)j_Uab-Ua)k- Jl< aK(Ta-Tab )- PaJk ]

+ ' (4oTa,b),(4.8),
or substituting Uab , Tab , Vab ,

[6(maCajCak) ]ab= _ab[(i/3)(2-_ab)8"k(mb/mo)2pa(%-_a)2J +

2 "-_ -_" "_ "_

+eab(mb/mo ) Pa(Ub-Ua)j (ub-Ua)k + 26jk(_/mo)NaK(Tb-Ta)-(i/aab)Paj k] °

(4. "i±,

In (4.10), (4011) the collision frequency _ab ' and hence aab '

now corresponds to She Maxwell molecule force law (see (3.72a)) •

Comparison of (4.10), (4oi1) shows that the Gross-Krook result

contains no "cross" traceless pressure term, PbJk ; this could

have been anticipated from the model (4.1) inasmuch as it contains

|
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no tensorial-like parameter. The ratios of the terms involving

(Ub-U a) , (Boltzmann:Gross-Krook) are of order (1/_ab) ; the terms

involving (Tb-Ta) agree exactly. The ratio of the coefficients of

PaJk are (Boltzmann: Gross-Krook)

[2+(3A2/2A1)(mb/ma)](W/mo)_ab _ 0.89 _ab ' ma _ mb (4.12a)

"_1.55 _ab ' ma << mb (4.12b)

%

" 2(%/ma)_'_' "'a "> % • (4.12c)

i We see from (4.12c) that if we set _ab = ma/_nb

I

I
I
I

I

for agreement of

the PaJk terms in (4.10), (4.11), for the case ma >> mb , then

the terms involving (Ub-Ua) will be in disagreement by a factor

proportional to mb/m a << 1 . Furthermore, we see from (4.12b,c)

that if we set 1.55 Cab = 1 for agreement between the PaJk terms

for the case ma << mb , then the ratio of the PbJk coefficients

(Boltzmann: Gross-Krook) in [6(mbCbjCbk)]ba will be 1,29(ma/mb)<_l.

Hence, we see that the integrals [6(maCajCak)]ab can be made to

q_

agree fairly closely for the cases ma _ mb , ma << mb , but no__}_tfor

ma >> mb; if we consider both partial integrals, [6(maCajCak)]ab

i
I
I

i : L

Note that for the partial pressure collision integrals to

agree exactlythe kinetic model would have to incorporate in addition

a tensor with at least five independent elen_nts, corresponding to

the five independent elements of the partial pressure collision 44
integrals. The Gross-Krook model is a degenerate form of Holway's
"ellipsoidal statistical model" which does exactly this.

I
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and [6(mbCbJ_k)]ba , then close agreement between the Gross-Krook

_v

and Boltzmann results is only possible for ma _ mb . Inspection of

(4.I0), (4.II), shows that if we set

_ab = 2[1- 3A2(5)/4Al(5) ] _ 0.45 , (a _ b) , (4.13a)

then the integrals [_(maCajCak)]ab agree exactly for the cases

(4.12a,b), apart from the missing PbJk term in (4.11) and the

fact that the ratio of PaJk coefficients (Boltzmann: Gross-Krook)

is (0.40) for ma _ mb , and (0.70) for ma << mb .

Finally, we note that agreement between the self-partial

pressure collision integrals [_(maCajCak)]aa can be achieved by

adjusting _aa ; the result is

_aa = 4Al(5)/3A2(5) = 1.29 , (4.13b)

which agrees with the result Hame141 obtained by considering a

binary system with one con_ponent a "trace species" (i.e. Nb/N a _ 0).

Altemately, (4o13b) gives the discrepancy between the Gross-Krook

and Boltzmann results if we set _aa 1 , so that v' = Vaa

The partial heat flow collision integral of the Boltzmann

operator is, for Maxwell molecules (cf. (3°82)), exactly

[6(1 2 = "N ,* _" , 2 ÷ +maCaCak)]ab _abt aU_Ub-Ua)k [Y(mb/mo) (Ub-Ua)2 +

I
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+5_(%'o2)K(%-T_)+(SZ2)K... TaZm_l+"_"(%-_a)J2_(%Zmo)2(Pa_k-_-a+

+ Pbik) + (l+( .- 4)(rob/too) ) +2YNaU(n_/mo)2(qbk/Ob ) _
°b • a

- [2x(mb/mo)2+ 2(rob/too)(-3+A2/AI)+3] (mb/mo)qak} (4.14)

where y _ 2-A2(5)/AI(5) . The corresponding integral of the Gross-

Krookmodelis

or, substituting for ÷ v' (4.7a,b), (4°8),
uab ' Tab ' ab '

[6(21-" m 2 Vab N ÷ ÷aCaCak)]ab = { a_(Ub-Ua)k[(_ab/2)((5/3)(2-_ab)+_ab)

"(mb/mo)2(_-_a)2+5_ab(_/m2o)K(Tb-Ta)+(5/2)K Ta/ma]- q_/aab} •

(4,15)

Comparison of (4.14), (4.15) shows that the Gross-Krook result

contains neither the "cross" heat flow term, qbk ' nor the traceless

-'+ -" - -+ '+ .2
pressure terms. The ratio of the tents involving (Ub-Ua)k(Ub-Ua) ,

(Boltzmann: Gross-Krook) is of order (1/_2) ; the ratio of the

terms involving (_-_a)k(Tb-Ta) is of order (1/(_ab) . The terms

involving (Ub-Ua)kT a are identical. The ratios of the coefficients

of qak are (Boltzmann: Gross-Krook)
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A2(5) mb A2(5) mb

_ )o[(_-_q_-)_o+_--_)-3]+3__oO_.0.76_.,,.

',, _ab 'ma <<rob

(a.16a)

(4.16b)

3(mb/ma)Sab , ma >> mb .

(4.16o)

The set of ratios (4.16a,b,c) is similar to that for the comparison

of the partial pressure collision integrals, (4.12a,b,c), implying

an analogous conclusion. As can be seen, however, the ability of

the Gross-Krook model to imitate the results of the Boltmmann

operator decreases with ascending moments; this is what one would

expect for a fixed number of modelparameters, and is typical of

kinetic models. Nevertheless, it is encouraging to note from the

similar sets of ratios (4_12a,b,c) and (4il6a,b,c) that when _ab

is adjusted for maximumagreement of the pressure integrals, the

heat flow integrals are simultaneously brought into closer

agreement.

If the value of _ab given by (4_13a) is used, the partial

heat flow collision integral of the Gross-Krook model agrees

closely with that of the Boltzmann operator for cases (4iii6a,b),

apart from the missing terms. If _aa given by (4_._13b)is

substituted into the Gross-Krook integral, [_(imaasxC2C--)]aa , the

ratio of the _ qak coefficients is (2/3).

Summarizing, we see that the Gross-Krook model's partial
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pressure collision integral, [6(maCajCak)]ab , can be made to

agree fairly well with that of the Boltzmann operator for the cases

tb

ma _ mb and ma << mb , but no____tfor the case ma >7 mb . For the

case where the "cross" traceless pressure term, PbJk ' is negligible,

or when Na/N b ÷ 0 (see (4.10)), the agreen_nt is excellent. (An

example which satisfies bot____hof these _conditions is the calculation

of the electron-neutral collision integrals in a weakly ionized

gas). Similar observations apply to the model's partial heat flow

collision integral with qbk replacing PbJk ; the heat flow

integral suffers an additional discrepancy in that it does not

contain traceless pressure terms, PaJk ' PbJk ' as does the integral

of the Bolt mTmnn operator. Finally, we note that for the cases

ma _ mb and ma << mb , the aforementioned agreement between

integrals is affected only slightly by identifying _ab , th___e

model's collision frequency, with _ab ' the actual collision

frequency, i.e. setting _ab equal to unity.

4.2 The Sirovich Model

?he Sirovich model 19 extended to a multicomponent system is

(_Fa/_t)coll ° _(Fa-F(a°) F (°) _ . + +=-_ )-( a /Pa ) Z {AabC a (Ua-Ub) +
b

where _(o)
Fa

÷ ÷ 2
2 2 (Ua-U b) +(3/2)_ab(Tb-Ta)]} (4.17)+ (l-2Ca/3aa)[ Xab

2 are given by (4o3b), (4o2a), and where _aa'and aa
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(the model's self-collision frequency), Aab , Xab, and _ab are

assumed to be velocity-independent. The first term in (4o17) is

just the Krook model for a single gas, while the remaining terms

are cross-collision terms reflecting the differences in species'

flow velocities and temperatures.

As in the case of the Gross-Krook model, the Sirovich model

automatically conserves the species' _ss

ma 2 Na 3 a2a)[Xab,._ ,-* ,,2
[ 6 (ma ) ] ab = -ma v_ (Na-N a) - _a (Na. 3 a2a 2 _'Ua-Ub ) +

+(3/2)6ab(Tb-Ta)] _ 0 . (4_18)
P

Following the same procedure as in the Gross-Krook model analysis,

we shall require the model (4.17) to reproduce the partial momentum

and energy collision integrals of the Boltzmann operator for the

case where the species' distribution functions are Maxwellian for

E <, i (general central force laws) and for s _ 1 (general inverse

power force laws); again, the restrictions on the distribution

fi_nctions and E will be removed for the Maxwell molecule force lawo

The requirements for conservation of total momentum and energy will

then be satisfied automatically.

The partial momentum and energy collision integrals of the

Sirovlch model are

(4o19a)
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-_ -_ 2
E_(½maoa)]_2 _-_3qb(Tb_Ta)+×ab(%__a)

Equating (4.5a) to (4.19a), and (4.5b) to (4.19b), gives us

(4.19b)

Aab = _Na_ab

gab = 2 (1J/mo)NaK_ab

×ab = ("2/ma)Na_ab

(4.20a)

(4.20b)

, (4.20c)

where in obtaining (4.20b,c) we have made use of the fact that

(Tb-T a) and (_a-%) 2 are, in general, independent quantities.

As noted in the Gross-Krook model analysis, the results for

E >> l, general inverse power force laws and Maxwellian distribution

functions, can easily be obtained from the results for E << 1 ;

the only change here is that _ab is now given by (4o20b) times

(n+4)/3, and Vab in (4o20a,b,c) is now given by (3.59a).

The partial pressure collision integral of the Sirovich model

is

_ 2
[_(maCaj Cak) ]ab= -_PaJk_ab +(2/3) _jk [(3/2) _ab (Tb-Ta)+×ab (Ua-Ub) ]

=__, p ..6.+ 2 1 m 2
aa ajK as _Jk[6(_ aCa)]ab ' (4.n;_

where the first term in (4.21) appears only in self-collisions,
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i.e. "a" = "b" . Substituting for _ab 'Xab ' (4o20b,c), we have

÷ _ 2

[6(maCajCak)]ab = -V'aa PaJk6ab+(2/3}6jkNaVab_[(_/ma )(Ua-Ub) +

+ (3K/mo)(Tb-Ta) ] • (4.22)

Comparison wlth the Boltzmannresult (4o10) shows that the Sirovlch

result (4.22) contains neither the "cross" traceless pressure term,

PbJk ' nor the term involving (Ub-Ua)j(ub-Ua) k . The terms in

bracket_i "[ ]" , in (4.22) are in very close agreement with the

corresponding terms in (4.10). What is striking is the fact that

the traceless pressure of species "a" , PaJk ' appears in the

= z[6(m.c_Cak)]ab ,
total pressure collision integral, 6(maCajCak) b _ _

sole1_v through self collisions (cf. first term in (4.22)); this of

course is a consequence of the fact that the species "a"

distribution function, Fa , appears in the Sirovich model for

(6Fa/6t)coll ° only in the self-collision term (the first term in

(4o17)). To see more clearly the implication of this we write the

equation for the species "a" traceless pressure (see (2.28d))

2 _Jk 6(I2 2 ,DaPa_k + 6(maCaj Cak)-....Dt : maCa):-Vaa PaJk ' (4.23)

where we have sun:ned (4.21) over all species "b" . Expression

(4.23) is exactly the result of the Krook model for a simple gas;

clearly, the Sirovich model is inadequate for the calculation of

traceless pressure for any system other than a simple gas.
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The adjustment of the self-partlal_pressure collision integral

is identical to that of the Gross-Krook model analysis

_' = [3A2(5)/4Al(5)]_aa _ 0.775_aa (4.24)aa _ *

which of course gives the discrepancy between the Sirovlch and

Bolt_m results if we were to identify _' with _ .
aa aa

The partial heat flow collision integral of the Sirovlch

model is

[6(½ ma c2cak )lab = -Vaa' qak6ab - (5K Ta/2ma)Aab(Ua-Ub) k

= -_'aaqak_ab+ (5KTa/_a)[_(macaQ]ab. (4°25)

Comparison wlth (4.15) shows that the Sirovlch result (4°25) does

t "@ _" _ t "_ "_ _2 "_ -_

not contain the terms involving _ub-Ua)k_Ub-U a) , (Ub-Ua)k(Tb-Ta)

as does the Gross-Krook result° The comment regarding the PaJk

term in the Sirovlch pressure integral (4.22) holds here for the

qak term. The equation for the species "a" heat flow is

(see (2.28e))

DaqakDt+ = 6(I 2 )_ 1 (5 Pa6jk+ pajk)_(maCaj )° maCaC__a

=-_'aaakq + (i/_a)PaJk bZAab(Ua-Ub) j -

I
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This is essentially the s_imple Krook model result with the

additional term in (4.26) reflecting the difference in species

flow velocities.

4o3 Model.s Based Exclusively Upon Equivaie_c e of

Collision Integrals

The forms of the Gross-Krook and Sirovich models are results

of detailed physical and mathematical considerations with a view

towards approximating the Bolt_nann binary collision operator,

(2.21) ; the equivalence of collision integrals is more of a

secondary concern in this respect. In this section we will

construct a kinetic model with the exclusive goal of reproducing

exactly the partial collision integrals of the Boltzmann operator.

The philosophy we assume is that, since the model imitates exactly

the Boltzmann operator with regard to collision integrals, one can

expect the constructed collision te_n (6F/6t)coll ° to be fairly

satisfactory in problems where the equation of motion (2.20) is

solved directly for the distribution function (e.g. the propagation

of a longitudinal sound wave in a plasma).

Before proceding, we may note that the Sirovich model (4_17)

can be substantially improved, with regard to its partial pressure

and heat flow collision integrals, in a very simple manner; if we

replace the self-collision term in (4_17) by

I
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, _-(°) _(Fa_F(aO)-_aa(F_-_ a ) ÷- _ )
b

(4.27)

then the partial momentum and energy collision integrals (4o19a,b)

are unchanged, and the first term in the partial pressure collision

integral (4.22) is replaced by

--%)I _ -- V t =
aa Pajk6ab ab PaJk -(_ab/aab)Pajk

(4.28)

_' is the revised model's collision frequencyIn (4.27), (4.28), ab

between species "a" and "b" , taken as usual to be velocity-

independent; in (4.28), _ab e _ab / ab ' as in the Gross-Krook

model analysis. We note that the replacement indicated in (4.27)

' by _heamounts to replacing the self--collision frequency _aa

total collision frequency for species "a" Z _'
' ab "

b

The con_parison of the Pajk terms in the partial pressure

collision integrals (Boltzmann: revised Sirovich model) is then

identical to that made in the Gross-Krook model, (4.12a,b,c).

However, because the "free" parameter _ab occurs in the revised

model's pressure integral only through the term (4°28), as

contrasted with the Gross-Krook result (4.11) where _ab appears

in terms involving (Ub-U a) as well as PaJk ' the revised

model's result agrees equally "well" (keeping lnmind the missing

terms) with the Boltzmann result for all three mass ratios:

ma/m b _ i , ma/m b _< i , ma/m b >> i . Of course, if _ab is

I
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adjusted for agreement of the PaJk ter_s in [_(maCajCak)]ab for

the case ma << _ , then the ratio of PbJk coefficients in

[6(mbCbJ_k)]ba Is of the order ma/_ <_i, Just as in the case of

the Gross-Kr_ok model,

The revision (4.27) results in the first term in the partial

heat flow collision integral (4o25) being replaced by

-v_aqak6ab + -_' = -( (4.29)abqak _ab/_ab)qak "

The comparison of the qak

collision integrals (Boltzmann:

the same as that for the P
ajk

collision integrals.

terms in the partial heat flow

revised Sirovich model) is then

terms in the partial pressure

With a view towards reproducing exactly the four partial

collision integrals of the Boltzmann operator, for the most general

type of problem, we now suggest the following sche_eo In analogy

to the Grad expansion of the distribution functions in Section 2.3,

we expand the partial collision term (6Fa/6t)ab in three-

coll.

dimensional Hermite polynomials with a contraction of the third

order tensor (see equation preceding (2° 38) )

= F(o)[xab+_bo_+ _c + b 2 o"(_Fa/6t)ab a iJ aiCaj _i Ca Cai] _ (4°3

coll.

As it stands thereare a total of thirteen independent scalar



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

parameters in the model (4°30); this is the minimum number required

for: conservation of species' mass (one required); equivalence

of partial momentum collision integrals (three required); equi-

valence of partial pressure collision integrals, which includes

equivalence of partial energy collision integrals (six required);

and equivalence of partial heat flow collision integrals (three

required),

NOW, for brevity of notation, let _b , _jb , _b denote,

respectively, the partial momentum, pressure, and heat flow

collision integrals of the Boltzmann operator (in a completely

general sense, with no qualifications as to diffusion Mach number,

force law, etco )o The parameters in (4.30) are then evaluated by

imposing the following "constraints" upon the model:

0 : I ____ma(_Fa/_t)ab

coilo

(i) conservation of species' mass :

d_ _=(o) (xab+ X_i_, ....v = ma j_a CaiCaj)dCa ,

or 0 = xab+ (a2/2 X_..b 2 Ta/m a ;) ii ' aa e 2K (4o31a)

(ii)

_b= ma YCak(6Fa/6t)ab

coll.

or

e_uivalence of partial momentum collision Integrals:

d$ - ma IF-(O)Cak(X_bCai+ai yah 2 -i CaCai )dca

_b pa[ kX_ + 2 ab= (5aa/2)Y _ ] ; (4o3ib)

I
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(iii) equivalence of partial pressure collision integrals :

= ma/C_Cak(_F_/_t)ab_dU = ma/F(°)C_Cak(xa_+xabca c )d_pq ap aq a
coll.

or _b pa[_jkXab+ 2 6 b 2X_jk)] ;= (aa/2) ( Jk?i + (4.31c)

(iv) equivalence of partial heat flow collision integrals:

= (ma/2) IC2aCak(6Fa/6t)ab d_ = (ma/2) IF(°)C2aa Cak(?bcai +

coll.

..ab 2 ..÷
+x i CaCai)ac a ,

or _b , 2 [Xakkb+. 2, yah= (5aaPa/4) (7aa/2) k ] ' (4.31d)

Note that (iii) assures the equivalence of the partial energy

collision integrals. Solving (4.31a-d), we obtain

_,=__/_

•X_l = (1/Pa)[(7/2)_i b- (2/a2a)_.b]

_._ I 2 b= ( /Paaa)_ij

Yiab= (i/Paa2a)[(4/5a2)_ b

(4o32a)

(4o32b)

(4.32c)

(4.32d)

Substituting (4.32a-d) into (4.30) gives us

!
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coilo

_ F(a°)

Pa

+

2

+ (_ _b _)Ca- _ c_]
aa aa

(4.33)

We note that when Fa _(o) _(o) -* -_ = Tb ':_'a ' Fb ="'b ' Ua: Ub' and Ta

all partial collision integrals of the Boltzmann operator vanish

(since the BoltmTmnn operator itself vanishes for this case), so

that (6Fa/6t)ab as given by (4.33)

coll.

case° For a simple gas, (4.33) becomes

also vanishes for this

6F
a

(-T@)aa
coll.

: _-__ c_c_
a a

- + _ Cai(_ -_ -1)]

aa aa

(4.34)

If we consider the Maxwell molecule force law in a completely

llnearized problem where flow velocity and temperature differences,

traceless pressures, and heat flows are all first order quantities,

then we have from (3 72), (3.78')_.(3.82), respectively,

i_b= NaVab_ (%-_a) i (4.35a)

_= NaUab(_/mo)[2aijK(Tb-Ta)+O'45 PbN-_bi

P

-3o55%/_a)'_]
(4.35b)

I
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i_ __ Na_ab_ { 5 KTa (%__a)i+io94(mb/mo:2 q_bl
2 ma Pb

_ [l.94(mb/mo)2 3o94(mb/mo)+3] qalo_._}

(4.35c)

As an example we consider the weakl F ionized sas (see Section 5°2)

where "a" and "b" represent electrons and neutrals, respectively;

thenma/_<<1 ,andNa/Nb_O o Forthiscase,thetota____1

collision term, (@Fa/_t)coll ' , can be approximated by

(6Fa/6t)ab , and (4.35a-c)become, respectively,

coll

_a_

(4.36a)

(4.36b)

_.b= _ab[ 5 pa(%__a)i_ qai] " (4.36c)

Substitution of (4.36a,b,c) into (4.33) then gives us

_F
6Fa _ • a (o) * _ qai Cai

(-_)coll. _ (-_)ab = _abFa {[2(Ub-Ua)i+2-_a]--_-
coll. aa

2-

-3° 55 PaiJ CaiCaj qal Ca
Pa 2 - 0.80 Pa _Cai} °

aa aa
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4o4 Comparison of Models

In order to determine the models' parameter.'swe have required

the Gross-Krook and Sirovich models to reprcduce the partial

momentum and energy collision inZegrals of the Bo!tzmann operator

for the case where the species' distribution funct!ons are

Maxwelli_n fcr _ _ I (general central force laws), and _ _ i

{general inverse pcwer force laws); the restrictions on the

distribution functions and E were removed for the Ma_ell molecule

intergarticle force law. We have seen that no matter what the

parameters are, the partial pressure and heat flow collision

integrals of the Boltzmann operator cannot be reproduced, even for

the "simple" Maxwe]l molecule fcrce iaw_ However, the Gross-Krook

model is a decidedly more acc_rate model in imitating the Boltzmann

results than is the Sirovich model; as a matter of fact, the

Sirovich model's par__.ialtraceless pressure integral was shown to

varlsh when "a" _ "b" , and to yield the simple Krook model result

when "a" -- "b" ',see (a-21)). We shall show in Chapter V that,

under certain conditions, _he Grcss-Krock msdel is sufficient for

rhe calculation of traceless pressure an.d heat flow in the case of

a weakly ionized gas. Of course, we have seen that even the more

"accurate" of the two models, namely the Gross-Krook model, is in

serious disagreement with the Boltzman.n operatcr in regard to the

partial pressure and heat flow collision integrals when m
a _ mb "

The revised Sirovich model is a substantial improvement over
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the Sirovich model but still does not reproduce the form of the

Boltzmmmu results as well as the Gross-Krook model does; however,

this revised model cmn also be shown to be adequate for a weakly

ionized gas, subject to certain restrictions.

The "equivalence" model, (4.33), of course, is able to

reproduce exactly all four partial collision integrals of the

Boltzmann operator for the most general problem (i.e. no

restrictions on the distribution functions, the force law, or

consequently, its parame_er_ are, in general, quite complex.

However, for llnearized problems, particularly in the case of a

weakly ionized gas, the parameters are considerably simplified.

c);

Finally, we should emphasize again that the validity of these

kinetic models as substitutes for the Boltzmann binary collision

operator can, to a large extent, be ascertained by their ability

to z_produce the partial collision integrals of that operator.
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G_I_R V

REDUCTION OF THE TRANSFER EQUATIONS -- CALCULATIONS

OF THE TRACELESS PRESSURES AND HEAT FLOWS

In this chapter we return to our theme of transfer or

transport phenomena_ Up to now we have been concerned with the

closed set of transfer equations (2o44a-e) for the thirteen moments

Ns, u s , Ts or Ps ' PsJk ' qs ("closed" in the sense of the

footnote on page 23)° As they stand, these equations are, in

general, untractable; we thus seek some means of simplification.

One means, of course, is sinTply to _ the traceless pressures

and heat flows, ioeo se__ttPsjk e 0 , qs e 0 ; this amounts to

_(o) (see (2.41)),assuming Maxwellian distribution functions, Fs = _s

and leads to the closed set of five transfer equations for the five

moments Ns ' Us ' Ts or Ps ' i.e. (2.44a-c) with PsJk --0 and

qs -=O. This set of equations, as noted in Chapter I, has been

considered by several authors for various force lawso

A less restrictive technique for simplifying the set of

transfer equations (2o44a-e) is to retain the traceless pressures

and heat flows in such a manner that they are expressible in terms

of the first five moments Ns , us , Ts or Ps " In this way the

set of thirteen transfer equations is reduced to a set of five

transfer equations involving the first fiv____emoments. The degree of

lO6
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difficulty involved in solving the system's transfer equations is

thus considerably reduced, while at the same time a wide class of

non-local equilibrium problems is admitted (i.eo the effects of

"viscosity", corresponding to the traceless pressures, and "thermal

conductivity", corresponding to the heat flows, are retained).

Of course, in order to express the higher order moments PsJk

and q_s in terms of the first five moments and thereby obtain a

closed set of transfer equations in Ns' Us ' Ts or Ps ' we must

be able to "solve" the equations for Psjk and qs' (2.44d,e). We

shall see in Section 5.1 that, subject to certain restrictions on

the spatial and time variations of the macroscopic properties of

the gas mixture, the equations (2o44d,e) reduce to coupled

algebraic equations; their solution is then relatively straight-

forward. The resulting expressions for Psjk and qs can be

substituted into the first five transfer equations (2.44a-c); the

conTplete set of 5r such equations (r -znumber of species) then

describes the gas mixture. Subject to further approximations

(e.g. a completely linearized system) this set can then be solved

for the first 5r moments, Ns , _s ' Ts or Ps °

In this chapter we shall calculate the traceless pressures

and brat flows for: (1) a weakly ionized gas, with arbitrary

inverse power interparticle force laws and a magnetic field of

arbitrary magnitude, and (2) a binar F Maxwell molecule gas with

arbitrary mass and number density ratios° Then, in the last
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section we shall determine the traceless pressure for the entire

mixture in terms of the system's current density and flow velocity,

for a fully ionized gas° All of the calculations are for small

diffusion Mach number.

5.1 Reduction of the Traceless Pressure and Heat Flow

Equations to Al_ebraic Expressions

It will be recalled that all of the calculations in Chapters

II, III were for the case where the species' distribution functions

were "close" to their local equilibrium forms, the Maxwellian

F (°) (see Section 2°4) *distributions, s o For this case, of course,

the traceless pressures and heat flows, PsJk and qs ' are"small"

in the rough sense expressed by (2°48) - (2°50)° Keeping this in

mind, we see that the dominant terms on the left-hand sides of the

traceless pressure and heat flow equations, (2o44d,e), are those

which do not involve Psjk or qs ' with the possible exception

of the terms involving the ma6netic field, B (since i_I could

conceivably become arbitrarily large). Let us now concentrate on

the remaining terms on the left-hand sides of (2_44d,e) which do

involve PsJk and qs ' bearing in mind that the right-hand sides

(i.e. the collision integrals) also contain terms involving Psjk

and qs ; we wish to compare these two sets of terms. For this

The Maxwell molecule calculations of Section 3°5 were of

course independent of the species' distribution functions.

I
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purpose the PsJk terms on the right-hand side of (2o44d) may be

roughly viewed as being of the form

PsJk terms on right-hand side of (2o44d) _ VsPsj k ,
(5ola)

while the qs

viewed as

terms on the right-hand side of (2.44e) may be

qs terms on right-hand side of (2.44e) m Vsq s , (5olb)

where vs is the total collision frequency of species "s" ,

Vs = tZVst (see (3.42) - (3.45)). We now limit our attention to

gas mixtures in which the spatial and time variations of all

macroscopic quantities are "small" in some sense; explicitly, we

assume that

Ts/t- << 1 and _s/_ << 1 , (5°2)

-i
where T

S VS and £s = O(as_s) are, respectively, _he "me___

time between collisions," and the "mean free path" of species "s" ;

the quantities [ and x in (5.2) are, respectively, the

characteristic time and distance intervals for significant changes

in the macroscopic properties of the mixture° It should be noted

that what we are really assuming is that the species' distribution

I
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functions are "slowly" varying functions of (x,t), in the sense

given by (5o2).

Then from (5ola,b), (5°2), we see that the terms on the left-

hand sides of (2o44d,e) _d.ch involve PsJk ' q_ can be neglected

(except possibly for the terms involving B ) in comparison with

the corresponding te_ns on the right-hand sides, which are given

roughly by (5°la,b). Hence, to this level of approximation, the

traceless pressure and heat flow equations, (2o44d,e), reduce,

respectively, to the following coupled algebraic equations:

Bi

PsfsJk 6(msCsjCsk)- _ 8Jk6(F-2_sc(f-__ijhPs_)t+ = 2 i ms2s)

(5°3)

Ps _T
_sc ( x _ + 5 K s =

qs) k ms 8xk 6(lms c2cssi<-) -

N

- i__ (25_Ps6ik+ Psik)6(msCsi )
PS '

(5.4)

"ewhere _sc- _ s/ms)l_i (5o5a)

_Usj DUsk 2 v°_s
and fsjk _ _xk + _xj 3 6Jk

(5.5b)

The results (5°3), (5°4) can also be obtained using the so-
called "transport approximation"45 in which the assumptions (5°2)

are applied directly to the Boltzmann equation (2°20), (2o21)o

!
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It will be noted from (5.3), (5°4), that we have retained the

traceless pressure and heat flow terms involving the magnetic field

B since, for sufficiently large i_l , the "cyclotron frequency"

for species "s" , l_sc I , can become comparable to or even

greater than the total collision frequency _s (cf. (5.1a,b)).

Of course, there is, in general, a pair of analogous equations

for each species in the mixture. The solution of the complete set

of equations (i.e. all the PsJk ' qs ' in terms of the number

densities, flow velocities, and temperatures of all the species)

is, in principle, straightforward, but, as might be expected, the

algebra involved becomes progressively worse as the number of

species increases.

5°2 The Weakly lonized Gas with Arbitrary Cyclotron

_quencF and General Interparticle Force Law

In this section we consider a weakly ionized macroscopicly

neutral gas, in which the electrons and positive ions are trace

species, with the electrons possessing a sufficiently high

temperature so that the electron-neutral collision frequency is

mnch larger than either the electron-electron or electron-ion

collision frequencies. That is,

_n tNeOn<<1 (5.6)

A typical ratio, for _ corresponding to hard sphere force
en

law, is (_ee+_ei)/_en = O{104(Ne/Nn)(3OOO/Te )2} ; see (3°94)°
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so that Vee , Vei << Yen , (5o7)

where "e" , "i" , "n" represent, respectively, electrons,

positive ions, neutrals, and where "Z" is the charge number of

,
the positive ions° We wish to calculate the electron traceless

pressure tensor and heat flow vector° From (5°7) we see that the

total electron collision integrals may be approximated by the

partial electron-neutral (en) collision integrals (see (3°42) -

/

(3o45)),

(6Q)e _ (_Q)en ° (5°8)

Furthermore, from (5°6) we have

Vne' Vni << Vnn ' (5°9)

so that the right-hand sides of the neutral species' traceless

pressure and heat flow equations, (5°3), (5°4), can be approximated

by the partial neutral-neutral (nn) collision integrals,

The "n" used here is of course not to be confused with the

"n" associated with inverse power interpar_icle force laws,

n e -4/(p-l) , (See (3o53a-d))o

Note that we are no___ttassuming (6Q)n _(_Q)nn ' since this is

obviously not true for the total momentum and energy collision

integrals.

I
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= [_(mnCnjCnk)] (5.lOa)
nn

. I_ (25_Pn_ik+ Pnik)[ 6(mnCn i)]
_n nn

= [_(1 2mnCnCnk )] .
nn

(5.lOb)

Then, to first order in Ps_ps,qs/asPs, _ (cf.
i. k . '

(2".49),(2.50)_

We have from (3.42)-(3j45), (5.3), (5.4),(5.8) and (5.10a,b),

-2mc(a3jiPelk)t+ = • _l P - _ (_PefeJk -Ven { ejk 2 3

pnf_k = -(3/4)(1 z(2))-nn vnnPnJk

+ z Pe PnJk }(2))_nn

(5o11)

(5o12)

Pe _Te b-_ b_We(aBx÷ qe÷)k + 25-K me _xk = -Yen{ qek-( +l+2z (2))_nPe qnk -

-5K(Pe/mn)(Unk-Uek)[ (l+z(2))(Tn-Te)-(z/2)(mn/me)Te]}

(5.13)

(5/2) (KPn/mn) _Tn/_X k - -(1/2)(1-z_))Vnnqnk , (5.14)
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where bI e 2/3(1-z (2))

b2 _ [l+5z-(7/2)z,] -1

(5.15a)

(5°15b)

and where all "z's" refer to (en) integrals unless otherwise

specified. Finally, we have assumed a magnetic field in the a3-

direction, _ = B_ 3 , with B _I_I arbitrary; _c is given by

(we have suppressed the species subscript "e"), _c e (-e/me)B '

e > 0 , where e is the magnitude o£ the electron's charge. In

obtaining the right-hand sides of (5.11), (5,13), we have assumed

that Te/m e >> Tn/mn , and have used the fact that me/m n << 1 o

We see that, to this level of approximation, the traceless

pressure equations (5oll), (5.12), are completely decoupled from

the heat flow equations (5o13), (5.14)o We first solve for the

electron traceless pressure tensor. We have from (5oll), (5.12)

the following equations for the five independent elements of P
e

qJ

-2_ Pel2 + Pell =-nofll (5.16a)

2a Pel2 + Pe22 = -nof22 (5o16b)

_(Pell- Pe22 )+ Pel2 = -nofl2 (5.16c)

-_ Pe23 + Pel3 = -nofl3 (5.16d)

I
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i _Pel3 + Pe23 = -nof23 (5o16e)

I with the redundant equation

I

I

I

I

'b

Pe33 = -nof33

where _ _ bl(_c/_en ) = [2/3(l_z(2))](_c/Ven)

2(_ + z(2))

_jk- _ejk+ [
(i - _))

(me/n_)(Tn/Te )(Ven/Vnn )]_k

(5.16f)

(5.17a)

, (5.i?b)

I

I

I no = bl(Pe/Ven) =

and where we have defined an "electron viscosity for small magnetic

fields,"

[2/3(l-z(2))](pe/Ven) . (5.17c)

I The solution of (5.16a-e) is

I

I

I

I

I

Pell = -no(_ll + 2e_12- 2_2_33)/(i+ 4a2)

_ 2 _

Pe22 = -no(f22- 2_f12- 2_ f33)/(I+ 4_2)

(5,18a)

(5.i8b)

Pel2 = -no[fl2 + _ (f22- fll )]/(i+ 4e2) (5.18c)

Pel3 = -no(fiB + _f23 )/(I+ 2)

Pe23 = -no(_23- _13 )/(l+ a2) o

(5.18d)

(5.18e)

I

I
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We note from (5.16f), (5°17b,c), that Pe33 is independent of

the magnetic field (i.e. independent of _c ) ; this simply

reflects the fact that the magnetic force (recall that B = B_ 3)

on electrons moving in the a3-direction is zero so that the

momentum carried by such electrons across a surface in the a3-

direction, which is moving with the velocity ue , is not altered

by the presence of the magnetic field, B = Ba3 , which in turn

means that Pe33 ' a measure of such momentum transport, is

unchanged.

For small magnetic fields, we have from (5.18a-e)

q_

Pejk-_-Uofjk 'as I_I =l[2/3(1-z(2))](_c/Ven)l÷ O. (5.19)

For an infir_itel_ large magnetic field, we obtain

Pe -nof33

_i 0 0

1
0-- 0

2

0 0 I

as I_I _. (5.2o)

The result (5.20) is not at all surprising from a mathematical view

point; it could have been obtained with only a knowledge of the

result (5.16f). Since the magnetic field B = B_ 3 is so strong

it produces the only preferred direction in the system, which in

turn implies rotational symmetry about the _3-direction; hence,

I
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we inm_diately infer that Pell = Pe22 and since Pe is always

_ 1 1
traceless, we find that Pell = Pe22 2 Pe33 = 2- nor33 ' from

(5.16f)° Furthermore, because of the rotational symmetry about

÷ ÷ ÷

the a3-direction, we see that the distribution function Fe(X,v,t)

÷ ÷

must be "isotropic" in the velocity alVl+ a2v 2 , that is,

÷ 2 2 t) ; from this we immediately conclude thatFe= Fe(X,V 1 + v2 , v3,

2 + 2 Ce3,t) *uel = Ue2 = 0 (see (2.5)), so that Fe = Fe(_ , eel Ce2 ,

From the definition for PeJk ' (2°13), we then see that

Pejk = 0 for j _ k , since the integrands involving Cel and

Ce2 are both odd+

We see from (5o19), (5.20) that the magnetic field has a

I

I

pronounced effect upon the electron traceless pressure tensor, with

.+

Pe becoming diagonal for very large magnetic fields.

The results (5.18a-e) si_olify for the case where the neutrals

I are in local equilibrium, Fn = FJ °) The neutral traceless
©

pressure then vanishes identically, and the fJk functions in

I (5.18a-e) become

I _-f_ = F (°) (5.21)k = eejk ' Pn n '

I

I

I

This type of distribution function and the form of (5.20)

appear as lowest order results for the ions in the Chew-Goldberger-

Low 46 magnetohydrodynamic formulation of a fully ionized,
÷ ÷ ÷

collisionless gas subjected to a strong Lorentz force, es(E+vxB) .

I

I
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I so that, for example,

Pell = -no(fell + 2efel2- 2_2fe33)/(l+4a2) , Fn = F(O)n "
(5.22)

I

I

laws, (fst = <st/rp '

The results (5o21), (5.22), are generally valid even when F is
n

no__ttMaxwellian since the ratio of the f_k coefficient in (5.1To)

to the feJk coefficient is, for inverse power interparticle force

n = -4/(p-l) , -4 in !O)-, roughly

I

I
I
I

l-n)/2 ( >me Tn Yen _ (_/_n)( Te/Tn)(n-1)/2 <<l for T _ T
ran% _ e n'

(5.23)

so that the fnjk term in (5olTO) is generally negligible° In

obtaining (5°23) we have used the expression for Vst for e << 1 ,

(3°94), and have assumed the same force law (i.e. same n) for

I
I

I
I

electron-neutral and neutral-neutral collisions ("hard spheres,"

for example), where the interparticle force law constant can be

written as <st = memtKst ' with <' independent of the masses m ,st s

mt. (Tois latter assun_ption is of course not valid for the Coulomb

force law, but one would hardly ascribe this force law to electron-

neutral or neutral-neutral collisions. ) We see from (5.23) that

I

I
For other force laws where <st does not involve the masses

ms , mt, (5°23) is replaced by (me/mn)i/2 (Te/Tn)(n-l)/2 << i o

I

I
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the fnjk term in (5.17b) is simply a "correction" term accounting

for the finite mass, and hence, the finite mobility of the neutrals.

Expression (5°22) is the result we would obtain for Maxwell

molecules using the Gross-Krook model of Section 4ol if, in that

model's partial pressure collision integral, (4.11), we consider

terms to first order in _ and set Sen - Ven/V'en = bI (compare

the traceless form of (4o11) with (5.11), with Pnjk --0 in

(5o11)). Furthermore, (5°22) is the exact result for Maxwell

molecules using the revised Sirovich model of Section 4.3, with

_en _ Yen/Yen = bI (compare the traceless form of (4.22), (4°28)

with (5.11), with Pnjk = 0 in (5o11))o

Before proceding to the calculation of the electron heat flow

vector we examine the influence of the interparticle force laws

_e ° Referring to the general results (5°!7a,b,c), (5olSa-e),upon

we see that this influence enters explicitly through the terms
<

bI - 2/3(i-z (2)) and 2(_ + z(2))/(!-z_ )) (5°24)

From Appendix A we have for inverse power interparticle force laws,

fst=_st/_ ,

z(2) = l-(n+6)A2(P)/5Al(P) , n = -4/(p-l) ,

so that bI = IOAI(P)/3(n+6)A2(P) = 0(I) for -4 < n < O (5°25)

I
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I

where we have used the fact that A£(p) = 0(i) o For hard spheres

(n=O) and Maxwell molecules (n= -i) we find, respectively,

bI = 5/6, bI = 0o65 o Similarly we find

i

I

i
i
I

I (2) (2) 212_-(n+6)A2(P)/AI (p)]
2(_ + z )/(1-Znn ) = = 0(1) (5.26)

(n+6)A2(P)/Al(P)

for n = 0 or -I , _ = 0 or-i , where n , p refer to the

neutral-neutral force lawo Hence, from (5.17a,b,c), (5.18a-e), and

(5°25), (5°26), we see that the interparticle force laws enter the

result for P
e essentially through the collision frequencies,

_en ' _nn °

I

!

Ret_g to the heat flow equations (5o13), (5o14), we see

that the electron heat flow equation can be written as

I (i + _'a3x I)o qe = -ko VT

(5°27)

I where I is the unit dyadic I -=alal+ a2a2+ a_a_z_ , and

I a'e b2(_c/Ven ) = [l+5z-(7/2)z,]-l(mc/Ven) (5o28a)

I

I
I

_- )/ 1 z (2) _(me/mn)2(Tn/Te)(_en/_nn ) }VTn +v_ VTe +{[2(l+2z(2)+l/b2 ( - nn )J

+2 (<Ven/Kmn)(%-%)[(l+z(2 ))(1-Tn/Te )+ (z/2)(_n/me)], (5 o28b)

I

!
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and where we have defined an "electron thermal conductivity for

small magnetic fields,"

I° e (5b2/2)(KPe/me_en) = (5/2)[l+5z-(7/2)z']-l(KPe/me_en)° (5°28c)

The solution of (5°27) is simply

,+ ÷ _-+-i iv _-_ ,-_

qe+ = -_o(I + _'a3x I) ° VT = -I ° VT
(5°29)

where

Ii IH 0

I± 0

0 0 1
0

(5o29a)

and 11 e Io/(I+_'2) ' IH e ioe'/(l+e'2) " (5o29b)

The notation II , IH will be explaned shortly.

We note from (5.29), (5.29a,b), that for small magnetic fields

we have

qe ÷ -fort as I_'l = l[l+5z-(7/2)z'] (_c/_en) l ÷ 0 , (5o30)

while for infinitely large magnetic fields
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qe ÷ -Ao(VT)3a3 as l_'i + _ (5.31)

so that

B -- B_3

qe is parallel or anti-parallel to the magnetic field,

, for this case.

Whenthe neutrals are in local equilibrium, Fn = F'°'n:_, the

neutral heat flow vector vanishes identically and (5.29) becomes

+ '_ 2 --+ _ (2)
qe = -A "{VTe+2(meVen/K_)('un-Ue)[(l+z )(1-Tn/_e)+(z/2)(mn/me )] '

= p(o) .
n n

(5.32)

Again, the result (5.32) is generally valid even when Fn is no__t_t

Maxwellian since the ratio of the VTn coefficient in (5o28b) to

the VTe coefficient is, for inverse power interparticle force

laws, roughly

(me/n )2 ',-,(me/m

or -_ (me/m n)

(3-n)/2 (Te/Tn) (n-l)/2 !I<< for

(Te _ Tn ,
3/2

(Te/Tn) (n-l)/2 <<0
(5.33)

depending upon whether or not _st involves the masses ms, mt

(see the discussion following (5.23)); hence, the v Tn term in

(5o28b) is generally negligible°

The result (5.32) can also be obtained (for Maxwell molecules)
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using the Gross-Krook model if, in that model, we set

+ : i+z(2)_ io03
_en _ ¢ /v' = b2 (compare (5o13) with qn 0 ,en en

z = 0 , with (4.15) minus (5/2)(KTe/m e) times (4o52)).

When Te _ Tn , (5° 32) becomes

qe :__{VTe+zme en_ (_-_e_'_e_n o (5°34)

Finally, for Maxwell molecules, z = 0 , and (5°34) becomes

-_ 4=+

qe = -k'VTe ' Te _ Tn ' Maxwell molecules . (5.35)

This is the exact result obtained from the revised Sirovich model

if, in that model, _'en = Yen/Yen = b2 (compare (5.13) with the

revised result (4°25), (4.29)minus (5/2)(KTe/m e) times (4.5a)).

Let us return to the general result (5°29) and explain the

notation used in (5o29a,b); expanding (5°29) into its component

parts, we have

qe : -ko(VT)3a3-k±[(VT)lal+(VT)2a2]-AH[(VT)2al-(VT)la2] °
(5°36)

The first term in (5°36) is in the direction of the ma_etic field,

= B_ 3 ; we see that for the same number densities, flow

velocities, and temperatures, this component of qe is independent

of the B field (i.eo independent of _c)O This simply reflects

the fact that the magnetic force on electrons moving in the

direction of _ is zero so that the random kinetic energy carried

by such electrons across a surface in the direction of B is

unchanged by the presence of the B field, which in turn implies

I
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that qe3 ' which is a measure of such energy transport, is

unchanged. The second term in (5°36) is normal to the B field ;

from (5o29b) we see that it is reduced for increasing magnetic

fields° In this case the non-zero magnetic force on electrons

moving perpendicular to the B field tends to reduce their

transport of random kinetic energy across a surface normal to the

field, so tD_t lqe_L! is reduced by the presence of a

magnetic field. The last term in (5°36) is normal to both (VT) and

B = B_ 3 ; this is the so-called "Hall" heat flow, which of course

vanishes as I_'l = Ib2(,.,c/Ven)I ÷ 0 .

As with the case of the electron traceless pressure tensor,

it can easily be shown that the interparticle force laws (en , nn

collisions) enter the result for qe ' (5o28a-c), (5°29), (5029a,b),

essentially through the collision frequencies, Yen and Vnn '

with the exception that the dominant term in the brackets, "[ ]" ,

in (5_28b), (z/2)(mn/me), vanishes for the Maxwell molecule

interparticle force law (i.e. z : 0)_

The results (5°22), (5°32), can be substituted into the first

five transfer equations for the electron species whose variables

Ne, Ue, Te or Pe ' can then, in principle, be solved in terms

of the neutral species' moments Nn, un , Tn or Pn ' with ?n

and qn given by (5o12), (5014), respectively; alternately, one

can work with the complete set of ten transfer equations (i.eo five
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for electrons and five for neutrals) in an attempt to solve for

the ten moments Ns ' _s ' Ts or Ps ' with "s" = e, n .

5.3 The Binary Maxwell Molecule System

In this section we shall consider a two-species gas in which

the particles obey the Maxwell molecule interparticle force lawo

The calculations are made to first order in e , assuming a small

magnetic field (ioe. l_scl, "s" = i, 2, is small compared to

the dominant collision frequency)° The essential difference from

the calculations of the previous section is that here the species'

traceless pressure equations are directly coupled, as are the

species' heat flow equations° After obtaining the general results

for species "i", we shall specialize to the following cases:

%,

(i) mI _ m2 , (ii) m I << m2 , (iii) mI >> m2 o

To first order in e , the traceless pressure equation for

species "s" is, for Maxwell molecules, from (3.78), (3.79), (5-3),

Psfsjk = 7. (mt/mo)PsVst{0.45 Ptjk_ __
t=l,2 Pt

To the same order, the species "s"

(3°82), (3°72), (5°4),

1 2 _-_) Psjk } s=l,2
S

(5°37) _

heat flow equation is, from

5 K
2

P _T
S S

u

Z Vst{4.84(mt/mo)2(PsK/mo) (Ts-Tt) (Utk-Usk) +
t=l,2

!
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m
o

+ (mt/m°)3(utj-Usj)[(3°48 _tt- l°94)Psjk- l'94(Ps/Pt)Ptjk] -

-i. 94 (mt/m o) 3(ps/p t)qtk+ (mt/mo)2 (io94 mt +3 m° -3"94)qsk '

S = 1,2 •

(5.38)

The solution of (5°37) is, for species "I",

PlJk = -(1/DVll){[O'775(v22/v12)-(Nl/N2)(ml/mo)2(l°55+_/ml)]PlflJ_

+ O° 45 (m2/mo)2 (pZ/p2)P2f2jk }
(5.39)

where D a {[0.60+0.775(_/mo)(2+lo55m2/ml)(V12/Vll)](v22/v12 ) +

The

+l.55+lo20(ml/m2)+3.1012+(ml/m2)+(m2/ml)](_/mo)(V12/Vll)}.

(5.39a)

solution of (5.38) is, for species "l",

qlk = -(i/D')[O'515(v22/v12)+(Nl/N2)(ml/mo)2(l'94(ml/mo) +

+3(mo/ml)-3.94)]'{(5/2)(KPl/mlv12)(_Tl/_Xk) +

+4.84(m2/mo)2(_lK/mo)(Ti-T2)(U2k-Ulk)+(m2/m-)3(U2o j-Ulj ) °

o[(-lo94+3° 48mo/m 2)Pljk -I. 94 (Ol/P2)P2jk ]} -
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-(lo94/D')(m2/mo)3(pl/O2){(5/2)(KP2/m2_12)(_T2/SXk ) +

+(ml/mo)3(N1/N2)(u_-u2j)[(-l.94+3.48mo/ml)P2jk-l°94(P2/Pl)P!j_},

(5°40)

D' _{[0.265(_ll/_12)-0.515(m2/mo)2C2](_22/_12 ) +

+ [(_/mo)2ClC2-O.515(ml/mo)2Cl(_ll/_12)-3.76(_/mo)3](Nl/N2 )_

(5.40a)

with as _ 3.94-1°94(ms/mo)-3(mo/m s) , s = 1,2 . (5o40b)

The solutions for species "2" are obtained from (5.39), (5o39a),

(5.40), (5.40a,b), by simply interchanging the species' subscripts.

Obviously, the results obtained so far are extremely cumbersome;

we shall now consider some limiting cases where a certain amount of

simplification is possible.

q_

Case (1): mI _n_ ,

-1

PlJk = -[ (0.688+1o 55_12/_11)+ (0o601+0.688v12/_ll)N2_22/Nl_12] •

"(1/_ll)[(0.877+O.775N2_22/Nl_12)Plfljk+O.112P2f2jk ]

(5.41)

qlk = [(N1/N2)+O'515(_22/_12)][(0"645+O'437_ll/_12)(_22/_12 ) +

I
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-i

+(O. 515+O°645_iI/_12) (NI/N 2) ] NIK(T2-T I) (U2k-Ulk)-

-[(0.39+o.265v11/_12)(_22/_12)+(o.515+0.39_n/_2)(N1/N2)]-1,

"{[O. 515 (v22/v12)+O. 757 (NI/N 2)](5/2) (KPl/mlVl2) (STl/3X k) +

+0. 605 (NI/N 2) (KP2/m2vl2) (ST2/_xk) +0. 125(u2j-Ulj )[(2.58(v22/v12) +

+4.27 (NI/N2) )PlJk- (2"69+N2_22/NIVI2) (NI/N2 )2P2jk] } •
(5.42)

The species "2" quantities

subscripts "I" and "2"

are obtained by interchanging the

Case (ii):, m I <<m2 ,

-i

Pljk = -[1"55+3"I(v12/vll)+(O'60I+l°2v12/vll) (P2V22/PlV12)] "

•(1/_ll)[(2+0.775P2_22/_l_12)Plfljk+O°45P2f2jk ]
(5°43)

qlk = [14.5(Pl/P2)+2°50(_22/v12)][(O'515+O'265Vll/V12)(v22/g12 ) +

+ (3+1.54v ll/V 12 )(p1/02 )]-l (ml/m2) NIK (T2_T1)(U2k_Ulk) _

_[(0.515+0o265Vll/V12)(v22/v12)+(3+l.54Vll/V12)(_I/P2)] -I o

I
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°{[Oo515(v22/v12)+3(Pl/P2)]E(5/2)(KPl/mlv12)(_Tl/aXk) +

+(_j_Ulj)(lo54PlJk-lo94(Pl/P2)P2jk)]+4o85(Pl/P2)(KP2/_v12) o

• (ST2/SXk)} o (5°44)

_he species "2" quantities are obtained by interchanging the

subscripts "l" and "2" in the results of case (ill) below.

Case (iii): mI >> _ ,

Pljk = -[l°55(ml/m2)+4(v12/Vll)+(2+O'775mlVll/m2v12)(N2v22/NlVll )]_l

-(i/Vll)[(ml/m2 )(2+N2v22/NlVl2) Plflj k+0. 58P2f2j k]
(5°45)

qlk = [2°50(v22/v12)+4°84(Nl/N2)][(3+O'515mlVll/_V12)(Nl/N2 ) +

+(1.54+Oo265mlVll/m2v12)(v22/v12)]-l(m2/mi)NiK(T2-T_(U2k-Ulk ) -

_[(Oo515(Vll/V12)+_n2/ml)(N1/N2)+(O.265(Vll/V12)+l.54m2/ml) "

-Y
•(v22/Vl2)] {[0.515(v22/v12)+N1/N2] (5/2) (KPl/mlVl2) (3T1/Sx k) +

+4o85(m2/ml)2(N1/N2)(KP2/m2v12)(_T2/_Xk)+(m2/ml)2(u2j-Ulj) '

!
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°[(3o48 (NI/N 2)+i.79_22/_12 )PlJk- (4o9#+N2v22/NI_I2 )(Ni/N 2)2P2j k]}

(5o46)

The species "2" quantities are obtained by interchanging the

subscripts "i" and "2" in the results of case (li) above°

To continue the simplification, we consider the case where

(5o47b)

q2k

= 2o8(ml/m 2) (p2-Pl) (U2k-Ulk)-(i/_ll) {2o05 (KPl/m l) (_T1/_x k) +

+5.46 (ml/n%2)(_ii/_22 )(KP2/m2)(_T2/_ xk)+ (u2j-Ulj) [-0o 475PiflJ k+

+i. 25 (ml/m 2)(_i/_22)P2f2jk ]]
(5o48a)

= 9o43(ml/m2)2(v12/_22)(p2-Pl)(U2k-Ulk)-(1/v22 ) •

"{4o85(KP2/m2)(;)T2/;)yk.)+5.44(ml/m2)2 (KPl/n_(&Tl/;_Xk) +

+(ml/m2)2(u2j-Ulj)[8.66(_12/_22)P2f2jk-2o7PlflJk]}O (5o48b)

qlk

P2Jk = "(1/v22)[l°29P2f2Jk+O'219(ml/m2)Plfljk ]

Plj k = -(1/Vll)[Oo534Plfljk+O.31(ml/m2)(_12/_22)P2f2jk ]

i m1 << m2 an___dN1 = N2 ; then, from cases (ii) and (iii) we have

(5o47a)
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If we further assume that TI _ T2 , then the first terms in

(5o48a,b) are second order terms in (T2- Tl)C k , and may be

neglected; for this case, if we write the Maxwell molecule

collision frequency as (see (3o72a))

Vst = 2_Al(5)(<st/U)I/2Nt = 2_Al(5)(mo<_t)i/2N t (5.49)

where <'st does not involve ms , mt , then (5o47a,b), (5.48a,b),

become, respectively,

PlJk = -0.534 (pl/Vll) flJk (5.50a)

P2jk = -lo 29 (p2/_22) f2Jk (5.50b)

qlk = -[2"05(KPl/mlVll)(_Tl/_Xk)-O'475(u2j-Ulj)(Pl/Vll)flJk]

(5o51a)

= -{4.85(KP2/mv22)(_T2/_Xk)+(ml/_)2(u2j-Ulj),_,._ •q2k

°[8.66 (v12/v22)P2f2jk-2 o7Plfljk] }

where we have taken into account the ratios

(5o51b)

T2/T I _ I , NI/N 2 = I ,

If <st is assumed to be independent of the masses, m s , mt ,

then the results (5o50a,b), (5.51a,b) still hold, except that the

(-2.7PlflJ k) term in (5.51b) can be dropped.

I
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ml/_ << 1 o It is interesting to observe that (5o50b) and the

first term in (5.51b) are the results one would obtain for a simple

gas of Maxwell molecules (ioeo the same coefficients of viscosity

and thermal conductivity, respectively), while (5o50a) and the

first term in (5o51a) are reduced from their simple gas counter-

parts by a factor of approximately 2o 4o We thus see that, to this

level of approximation, the he.avy species ("2") behaves vet F much

llke a simple gas, while the light species ("i") is considerably

influenced by the presence of the heavy species.

Finally, for case (ii), mI <_ m2 , and N1/N 2 + 0 , we

obtain from (5° 43), (5.44), respectively,

Pljk = - (I/_ll) [0o 646 (_ll/_12 )Plfljk+O. 375 (Ol/p 2)(_11/_22)P2f2jk ]

(5°52)

qlk = 4°84 (ml/_)NIK(T2-T I) (U2k-Ulk)-(i/_12) {2,5(KPl/m I) (_TI/_ K) +

+9.44(_12/_22)(Pl/P2)(KP2/m2)(_T2/_Xk)+(u2j-Ulj)[-Oo995Plfljk +

+lo90(Pl/O2)(v12/_22)P2f2jk]} o
(5°53)

These results agree essentially with the results of' Section 5o 2

for the weakly ionized gas, with "l" denoting electrons and "2"

denoting neutrals, if the interparticle force laws in those results

are taken to be that of Maxwell molecules and the limit Imc/_eni_÷ 0

!
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is taken. There is, however, a slight difference; the terms

involving fljk ' f2Jk in (5°53) are not present in the

corresponding result of Section 5o2, since in that calculation

terms proportional to e_Ps_kJ J were discarded at the outset°

5°4 The Full F Ionized Gas

Up to now we have concerned ourselves with the properties of

individual species (eog° species traceless pressure tensors,

species heat flow vectors); there are situations where one is

concerned with the properties of the complete system° This is

especially true in the field of magnetohydrodFnamics. An important

example is the study of the equation of motion for the s_stem flow

velocity (i.eo the system momentum equation); by sunmdng the

species' conservation of mass equation (2o44a) and the species'

momentum equation (2.44b) over all species, and performing certain

algebraic manipulations, the following system momentum equation

22
is obtained:

_p _Pik ÷ '_
°uk _ __ (P#siWsk)-_- _x---7 + pc_k+<JxB)k+_Gk

P_= S 1
(5°54)

where _ = z _s (system mass density) (5o54a)
S

u = _ ps_/p (system flow velocity)
S

(5o54b)

-9-

us- u (diffusion velocity of species "s") (5_54c)

!
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p _ Z Ps (system scalar pressure) (5_54d)
s

Pik _ Z Psik (System traceless pressure) (5.54e)
s

Pch _ Z esN s (system charge density) (5o54f)
s

J --Z Nses% (system current density) (5°54g)
s

D a
Dt z at + u.v (system hydrodynamic differential (5054h)

operator).

If we consider only small differences in species flow

velocities, and hence small diffusion velocities, the first term in

(5°54) may be discarded and we obtain the llnearized system

momentum equation

DUk _ aPik

p -_ : _ _ axi

-9- -_

+ Pch_ + (JXB)k+ PGk ° (5.55)

Let us now consider a full_ ionized gas (i.e. two species, electrons

and positive ions with a conTnon charge number). The question

arises as to what expression to "use for the total traceless

pressure tensor, Pik ; this in turn leads to the problem of what

sort of "viscosity coefficient" to use in (5°55)° Should we use

some simple-gas like viscosity which is dominated by the properties

of the electrons, or by the properties of the ions (as suggested

by Lyman47), or is the viscosity coefficient of such a system in

I
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reality more complex in form° The purpose of the ensuing

calculations is to answer this question.

Assuming a negligibly small magnetic field, we have to first

order in p /n_ _s/asPs' sjk _s' , the following eouations for the

electron and ion traceless pressures,respectively (see (3.43),

(_ i,_,_ (5°3))

Pefjk = -[(Yee/2)Vee+YeiVei]Pejk-(Yei-2)(pe/Pi)VeiPijk (5.56)

Pifijk = -E(Yii/2)vii+2(Pe/Pi)Vei]P_k-[Yei-(4/5)_(6/5)(Ti/Te) ] °

"(me/_ 1)veiPejk (5°57)

where Yst - (3/5)A2t(2)/AI t(2) " (5.58)

In obtaining the right-hand sides of (5.56), (5.57), we have

assumed Te/m e >> Ti/m i , and have used the fact that me/m i << 1 .

The solution of (5°56), (5°57) is

PeJk = -[(Yei+YeeVee/2Vei)Vei]-l{pefeJk+(2-Yei)(2+YiiPiVii/2PeVei )-I'

" PifiJk } (5.59)
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-i
PiJk = -[(2+Yii_ivii/2_eVei)Vei] (oi/_e){PifiJk +

I

I
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I

I

+2(me/mi)[(2/5)÷(3/5)(Ti/Te)-(Yei/2)] •

"(Yei*YeeVee/_Vei)-ipefejk } " (5.60)

Then taking into account the following collision frequency ratios

(see (3_94))

vii/Vei = /'2-Z2(me/mi)i/2(Te/Ti)3/2Aili(2)/A_i(2) (5°61a)

Vee/Vei - (_ Ne/Z2Ni )A_e (2)/AIi12) , (Z = ion charge number ) ,

(5.61b)

we have for the total (system) traceless pressure tensor

PJk = PeJk+ PiJk = -(nefeJk+nifiJk )

where ne _ [Yei+(Yee/2)(Vee/Vei)]-l(pe/Vei )

ni _ [2+(Yii/2)(Pi/_e)(Vii/Vei)]-l(_i/_e)(Pi/Vei ) •

(5.62a)

(5o62b)

In obtaining (5.62), (5062a,b), We have ignored the effects of the

_ ee eiratios A i(2)/A i(2) , A1 (2)/A1 (2) . The dimensionless cross

sections A_t(2) for a two-ten_oerature ionized gas have not, to

the author's knowledge, been rigorously calculated. They are

usually expressed as A_t(2) = _n(9N D) , where _D is the number of
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particles in a "Debye sphere" whose radius, rD , is taken as the

finite upper limit in the integration over the impact parameter

(see (3o10)) ; however, when the electrons and ions have different

temperatures, the form for rD is highly ambiguous (see references

[22], [48]). Nevertheless, for the purpose of the ensuing

ii • ei ee ei
comparisons, we can safely take A1 (2)/A 1 (2) , A1 (2)/A 1 (2) to

st(2 )
be of order unity in _iew of the logarithmic dependence of AI o

Furthermore, Lyman 48 shows that

st st
Yst = (3/5)A2 (2)/A1 (2) = (3/5)(2-1/_nAst) (5.63)

where Ast , the ratio of the Debye radius to the in_act parameter

for 90° scattering, is sufficiently large for a broad class of

problems so that (5°63) becomes

Yst = O(1) o (5°64)

From the results (5o61a,b), (5o62a,b), and (5.64) we have for the

"viscosity coefficients" ne , ni ,

ne = [0(1)](pe/Vei) (5.65a)

ni = {O[(ml/me)l/2(Ti/Te)5/2]}(pe/Vei ) o (5.65b)
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Returning to our result (5.62), we wish to express Pjk in

terms of the system's flow velocity, u _ We have from (5.54b),

(5o54g), respectively,

meNeUe + mi iui (meNe+ miN i)u (5.66a)

-eN eue+ ZeNiui = J " (5.66b )

Solving (5o66a,b) for ue , u_ , we obtain the exact expressions

ue = [(me+miNi/N e )_- (mi/ZeN e )J]/(me+mi/Z ) (5o67a)

ui = [(mi+meNe/Ni) (i/Z)u+(me/ZeN i)J]l(me+mi/Z) • (5o67b)

Substituting (5.67a,b) into (5o62), and using the results (5.65a,b)

as an accurate indication of the relative magnitudes of ne , ni ,

we obtain

N,

PJk = -(ne+"i)fjk-ne {(z _ -l)fjk+[uj G (ZNi/Ne) +

+ Uk _ (ZNi/Ne)- 2_-8"_'V(ZNi/Ne)]-[jjK (Jj/eNe) +

+_j_ (J/eNe)- _3 Jk V'(J+/eNe)]} *
(5.68)

It should be pointed out that N need not necessarily equal
e

22_Ii, even for macros,copicch_ge neutrality._

I
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_2 _k 2 _jkV°
where fJk ---_xk + _xj 3 °

(5.68a)

In obtaining (5°68) we have assumed the following relations:

Pe << oi (5.68b)

ni_e/ZN i << nePi/N e (5.68c)

_£nNi _£nNe

nip e I-_ I << ne0i I _-_-'k I
(5.68d)

_he assumptions (5o68b-d) are, of course, self-consistent; they

are also sufficiently general to admit a large class of realistic

problems°

The first term on the right-hand side of (5.68) is a traceless

stress term with (ne+n i) playing the role of a "coefficient of

viscosity"; it is important to note that this viscosity is no___t

necessarily dominated by either the "electron viscosity," ne , or

the "ion viscosity," ni , since from (5o65a,b)we have

n --ne+ni = ne , for (ml/me)I/2 (Ti/Te)5/2 << 1 , (5o69a)

and n _ Oe+ni = ni , for (mi/me)i/2 (Ti/Te)5/2 >> 1 . (5.69b)

The term in brackets, "{ }" , on the right-hand side of (5.68) is a

I
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"correction term," reflecting the difference in electron and ion

flow velocities since, if we set

we see that this term vanishes.

then

ue = ui = u , then from (5o66b)

The total traceless pressure is

PJk = -(Ue+ni)fJk _ - nfjk (5,70.)

with _e ' ni given by (5o62a,b), respectively; the result

(5°70), of course, also follows directly from (5.62) with Ue= u t =

= u . This is the result obtained by Lyman. 47
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CONCLUDLNG REMARKS

We have seen in Chapter II that, by employing the Grad

thirteen moment expansion for the species' distribution functions,

we can construct a closed set of 13r transfer equations which

describe the gas mixture, where "r" is the number of species°

Because theexpansion is relative to the species' flow velocities

and ten_oeratures, these transfer equations can be expected to

adequately describe systems whose species have arbitrarily large

differences in flow velocities and/or temperatures, in addition to

having non-Maxwelliandistribution functions.

The partial collision integrals occurring in the transfer

equations have been calculated for general interparticle force

laws, for very small and very large diffusion Mach numbers, _ .

We have seen that even in these limiting ranges the integrals are

very cumbersome; considerable simplification is possible, however,

for systems such as weakly and fully ionized gases, and, of course,

for "Maxwell molecule" gases° We noted in Chapter IIl that the

non-Maxwellian or "non-equilibrium" parts of the species'

distribution functions have considerably less influence on the

partial collision integrals for the case of large _ as compared

to the case of small _ o

141

I
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In Chapter IV we analyzed various simplified kinetic models

and discussed their ability to imitate the Boltz_ann binary

collision operator. In particular, we found the results of the

Gross-Krook and Sirovlch models to be in serious disagreement,

both in form and magnitude, with the partial pressure and heat

flow collision integrals of the Boltz_ann operator° A model based

......_.sion teal (_F/_t) collisions 'upon a Grad-like expansion of the _o __"

which reproduces the partial collision integrals of the Boltzmsr_

operator exactly, was shown to be a feasible working model for

certain linearized systems°

We demonstrated in Chapter V that, for "slowly varying"

systems, the traceless pressure and heat flow transfer equations

could be approximated by algebraic equations whose solutions, in

terms of the first 5r moments (number densities, flow velocities,

temperatures), are _eiatively straightforward° With these

solutions the system is then described by a closed set of 5/.r

transfer equations, while the effects of viscosity, corresponding

to traceless pressure, and _hennal conducti-_Ity, corresponding to

heat flow, are retained°

In our calculations of traceless pressures and heat flows a

number of interesting results were obtained° We saw in the case of

a weakly ionized gas that a magnetic field has a striking effect

upon the electron's traceless pressure tensor and heat flow vector,

with Pe becoming diagonal and qe "aligning" itself with B for
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infinitely large I_l. In the Maxwell molecule gas calculations

it was demonstrated that the heavy species tends to behave like a

Sidle gas (at least with regard to its traceless pressure and

heat flow), while the light species is decidedly influenced by the

presence of the heavy species. Finally, we observed that the

mixture's coefficient of viscosity for a fully ionized gas can be

dominated by either the electron or the ions, depending upon the

ratios of the masses and temperatures.
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APPENDIX A

INTEGRALS USED IN THE CALCULATION OF

THE COLLISION INTEGRALS

A. i General Integrals

Consider the arbitrary vector variable

x = aix i , (i = i, 2, 3) , (A.I)

and its coordinate system, Figure 3,

x3

0 x

_ x 2

"x\

x 1

FIGo 3 ARBITRARY VECTOR VARIABLE°

where ai is the unit vector in the i-th direction.

any Riemann integrable function of x - !_I ; then,

Let F(x) be

IF(x)d_ - IIYF(x)dXldX2dx 3 = I I I F(x)x2sinOded_dx = 4_ I F(x)x dx.
-co O O O O

(Ao2)



I
I

I
I

145

Next, consider the integral

I2n 5 I F(x)_2ndx (A°3)

I
where the

+2n
x _ K

I p=l

+2n
2n-th order tensor x

P

, n = i, 2, 3, 4, °.o ,

is given by

(A. 3a)

i We claim that

4Jn _(x)x_+2_
I I2n = 1"3"5" • (2n%1) I

"" O

(A.4)

I where the 2n-th order tensor _n is formed by taking the sum of

I

I

all distinct products of n Kronecker deltas, 6ij , which arise

on permutating the 2n subscripts il, i2, ... , i2n ; each term

occurs onc_____e,e.g.

I

I
I

I
I

_i _ 6ill 2 (= 6ij) , the Kronecker delta,

and _2 6_ o 6_ . +6. i 6. i +6.. 6__ (=6..
= I112 1314 ii 3 12 4 ill4 1213 136k£+6ik_j£+6i£6Jk) °

We prove the claim (Ao4) by mathematical induction on n .

Step (i): n=l , 12 - IF(x)x dx = IF(x)xixjdx (i.e. iI - I,i 2 - J,

here)°

I

I
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_G(x) xi dG

We note that _x---_-= x--_ _

i dS(x)
Then, letting F(x) = _ ,we

I
I
I

(integrating by parts in the dxi

vanishes at x. = + _). Hence,
1 --

I2 = -_ij YGd_ = -4,_ij I Gx2dx
0

integration and assuming Gxj

(using A.2)

I

I

4_ _ dG

=-_- 6ij I x3 _ dx
0

vanishes at x = O, -) .

(integrating by parts and assuming

1 dG
Then, substituting F(x) = _ ,

Gx 3

I

I

4. I F(x) x4dx
I2 = _- _iJ o

so that the claim (A.4) is proved for n = 1 .

I
I

I

Step (ii): We assume the claim (Ao4) is true for some integer n .

Step (iii): We must now show that (A.4) is true for n+l .

From (A.3)

I +2n+l.*-
I2(n+l) = I2n+2 _ I F(x)_2n+2d_ = I _xjx(j) ax

I +2n+2
÷2n+l _ x

where x(j) - xj °
1 _) as inThen, substituting F(x) =

I

I
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I

I
I

I

I
I
I

I
I

I
I

I

I
I
I

I

step (i) ,

12n+ 2 = i xj dG +2n+l_+ _G ÷2n+l_+
x _x(j) ax= f _x(j) Qx

÷2n+l.+ (integrating by parts in the dxj
= - f G _-_j x(j) cx

_÷2n+l
integration and assuming _x(j) vanishes at xj = _ _ ) .

+2n+l
÷2n+l i2n+lx(.._ i2n+l +2n

Now, _xj x(j) k=il Xk 6jk k=il 6jk x(j ,k)

+2n _ _2n+2

where x(j,k ) _ xJxk . Then,

12n+2 = _

i2n+ I i2n+l

+2n ._ 8.k_"_jk y G x(j,k)CX = -[ Z U LJ,k) ] "

k=i I k=i I

+
4_ y Gx2n 2 dx

1.3o5...(2n+1)
o

the assu_0tion of step (ii), where _(j,k) is the 2n-thusin_

order tensor _n which does not contain the subscripts "J" "k"

Now,

i2n+l _n+l
_jk _(j,k) _ from the definition of _n . Hence,

k=i I

+ 4w_ +I __ 2n+3 dG
-4_n+l [ Gx2n 2dx = l-3.5...(2n+l)(2n+3)_....x _dXdx

12n+2 - i°3°5"'°(2n+I) o

I
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(integrating by parts and assuming Gx 2n+3 vanishes at x --O, _) , or

4_n+l

I2(n+l) - 1.3o5 .-.[2(n+l)+l] f F x2(n+1)+2 dx
o

so that (A.4) is true for n+l if it is true for some integer n .

This completes the proof.

Ao2 The "z" Inte_als

For inverse power interparticle force laws

2 < p < _ , the collision cross sections are

fst = Kst/rP '

S(_)(g) = 2_(<st/_)-n/2A£(p)_ , n = -4/(p-l) ,

and S(£)(g) = (_a2/2)[2'{1+(-1)£}/(_+i)] , p +

-4<n<O

, n÷O- ,

"hard spheres," where _ is the sum of the radii of the colliding

particles.

The corresponding "Maxwell-avera_ed collision cross sections"

are

_y2 2j+3s_
Z(_'j) = (4/_)I e y (aoY)dy , (aoY =g) , so that

Z(_'j) = 4/_A£(p)(<st/_) "n/2 an F(j+2+n/2) , n @ 0 , (A.5a)

and Z(_'j) = F_-_o2[2-{l+(-1)_}/(_+l)]r(j+2) , n ÷ 0- ,

"hard spheres ." (Ao5b)

!
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We then have

z _ I-(2/5)[Z(I'2)/Z (l'l)] = -(1/5)(n+l) (A.6a)

z'_ I-(4/35)[Z(I'3)/Z (I'I)] = l-(i/35)(n+6)(n÷8) (Ao6b)

e l+5z-(7/2)z' = (7/2)[(1/35)(n+6)(n+8)-l]-n (A_6c)

^

z e z-z' = (1/35)(n+l)(n+6) (A.6d)

z"e 1-(8/315)[z(l'4)/Z (l'l)] = 1-(1/315)(n+6)(n+8)(n+lO) (Ao6e)

z(2) e 1-(2/5)[Z(2,2)/Z (1,1]] = l-(1/5)(n+6)A2(P)/Al(P) (A.6f)

z,(2)

_(2)

1-(4/35)[Z(2'3)/Z (l'l)] = 1-(1/35)(n+6)(n+8)A2(P)/Al(P)

(A.6g)

z(2)- z'(2) = (1/35)(n+l)(n+6)A2(P)/Al(p) (Ao6h)

z''(2) e !-(8/315)[Z(2'4)/Z (I'I)] = l-(i/315)(n+6)(n+8)(n+lO).

• A2(P)/AI(p) . (A.6i)

The results (Ao6a-i) hold also for "hard spheres," when n

set equal to zero, and A2(_)/AI (®) is set equal to 2/3 (c.f.

(A.5a,b)); the dimensionless cross sections Al(P) , A2(p) are

tabulated by Chapman and Cowling 35 for various values of p .

is
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APPENDIX B

CALCULATION OF THE PARTIAL PRESSURE

AND ENERGY COLLISION INTEGRALS

Bo I The Partial Pressure and Ener_ Collision Integrals as

Functions of the Diffusion Mach Number

Setting Qs = msCsjCsk in (3°2), we have for the partial

pressure collision integral

! ! "¢" -_

[8(msCsjCsk)] = ms IYYI(CsjCsk-CsjCsk)FsFtlgbdbdEdVdVl •
st

(B.I)

Expressingthe random velocities in terms of the center-of-mass and

relative velocities, we have (cf. Eqso (3.5c,d))

n_

_s = Co - _-- g-Us
o

and

cs = co- _-- g -u s
o

(B.2a)

, (B.2b)

mt
mo (Coj-Usj) (g_ - gk )

so that c' c' -c c -
sj sk sJ sk

-_-(Cok-Usp(@-9)-({)2(gJgk-@g{)_ "mo
(B.2c)

I
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From Sec. 3.1 we have (cfo Eqs. (3o8a,b))

gk = g_zk (B.2d)

and g_ = g[sin×(_xkCOSc + _ykSlnc)+ _zkCOS×] . (B.2e)

Substituting (B.2d,e) into (B.2c) and performing the integration

over dE we obtain

2_ mt itt t

I (c .c --c .c -)dE = 2_(I-cos×)2 _oo [gj(c°k-Usk) +o sj sK sj SK

+_(_-oo_×)_)_(_s3gjg _)
0

(B.2f)

Substitution of (B.2f) into expression (B.I) gives us

[_(msCsjCsk)] = _//FsFtlg{2S(1)(g)[gj(Cok-Usk)] t +
st

+ _ S (2) (g)(g _jk-_gjgk) }dvdv I , (B.3)

where we have used the definition of the general collision cross

section, S(g)(g) e 2_ I (1-cos_×)bdb .

Recalling the velocity

%

co (see (3.16)), we have

qJ

Co-U s --Co+ ao(ay + b_) (B.4)

I
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where y , _ , ao , a , b are given, respectively, by (3.18a-c),

(3.26a,b). _hen from (2.34), (2.41), (3o12), (3.16), (3.17a,b),

(3ol8a-c), (3o19) and (3o21), the expression (B.3) beccmes

[_(msCsjCsk)]st

_2

O +,_ ÷_21
-[7 _y-Ej ]

_ o__ ._ a
_3 ( /a )I# dcodY e _ y

.{2S (I) (aoY) [Yj (Cok+ao(_Yk+bek) )] + ao(mt/2mo)S(2) (aoY) (y26jk

P

_3YjYk)}O{1 + spq i [Cop_bao(Yp_ep ) _ b_ ][Coq_ ao(Yq-E q) ] -Ps 2
as

_[i- 2 1 _ _ + 2 r_
- _-_ (Co-bao(Y-¢)) ]LCop-bao(Yp-e p) ] +
Psas as

+ _ 1 [_op+(l_b)ao(Yp_ep )][_oq+(l_b)ao(yq_Eq)] -
Pt at2

- [I- 52 12 (Co+(l-b)_(y-E))__ 2][_op+(l_b)ao(Yp_Ep)] }
Ptat at

o (B.5)

qJ

The integration over dC+o can be performed directly (see (Ao4) for

the integrals involved); the result is given by (3°24)° One-half

the trace of (3°24) then gives us the partial energy collision

integral, (3°23)°

I
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B.2 Small Diffusion Mach Number

Expanding the exponential in (3.24), multiplying out, retaining

terms up to second order in

straightforward integrations

integrals ), we have

_i (i = 1,2,3) , and performing the

(see (A.2), (A.4), for the required

2o mt (2)[6(msCsjCsk)] = a uNs_st{a6jk+Fjk+%k[a(1-z) - _- (1-z )] +
st o

+_ z(9%),+ _ _.gk%si+_ 9k%Rir2a(z,- 7-12z)-

mt 7.(2)]+2( b- 57- z a+ _o ) +
--- ¢ R _frz 21 z(2) mt

mo j k" "2

+ 2¢jEk[mtm_° (1+3z(2) 2 1 mt)-za]+¢ [F (l-z(2))6jk mjo- z6jka -

_t
_ ZFjk+Ejk(_a_ _ _(2) _oo) ]+_i_pEip6jk [ (2z-z')a+_ (2) m_--] +

o

m_+ 2(ajepEk.p)'l'(2_a_zb_ 3 [(2) )_2z(¢japFpk)t } , (B.6)

where the "z" integrals are listed in Appendix A.2 .

Substituting the expressions for Eij , Ri , a , b , Fij , Si ,

(3o22b,c), (3.26a-d), respectively, we obtain the result (3.44);

1

The terms here are listed in order of increasing powers of

(i = 1,2,3) .
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the partial energy collision integral is then given by one half

the trace of (3°44), expression (3°43).

B. 3 Large Diffusion Mach Number

Upon making the transformation

Z _ y _ c , dZ = d_ , ( c finite) , (B.7)

and substituting the collision cross sections for inverse power

interparticle force laws (3°54), the expression (3°24) becomes

= aoCst _n+l I [1+(2 + )] 2 { ...
[_(msCsj Csk) ]st e

o..2[ (Zj+cj){_Zk+ mt 2
_o _k )[l+ZiZpEip+ZiRi (I- _ Z2) ]+ZiFik +

i A2(P) mt 2+ 2+ +.4

- 3(Zj+Ej) (_+_ k) ][l+ZiZpEip+ZiR i(l- _ Z2) ]} .* (B.8)

Expanding the binomial in (B.8), multiplying through, retaining terms

of zero and higher order in _ , and performing the integrations

(see (A.2), (Ao4), for the integrals involved), we obtain

For the case of hard spheres (n_ O)see footnote on page 55,

*Note_ that the factor n+l is excluded from this consideration°
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[6(m CsjCsk)]_ 3/2 -, ,n+l..... n+i_
= _ aoqst_ (a[ojk*[-T-)_j_ k] +

st ¢

1 mt A2(P)

+_Fo_j_k[4-3A7 )
+ (n+l) (4- 9 A2(P) 3 A2(P)

e2 _ AI--_) + n(l- iFAI-_))) ] +

+ [iAI--_)A2(P)_mt_jk[ 2+ _ (n+l)(n+6)]+Fjk+Ejk[a_ I[3A_)A2(p)m_ ] +

+ (n+l) [(
2 Ei_jFik)

+ (a+m--t(i
mo

3 A2(P) t]
2 AITP) ))(eiEjElk) +

A2(P) A2(P)
+ (n+l) _ mt [_Jk _)+ (n-l)e e (

(B.9)

_he underscored terms in (B.9) may be discarded without any

serious loss in accuracy. Then substituting for Eij , a , Fij ,

(3o22b), (3.26a,c), respectively, we obtain the expression (3.62),

from which the partial energy collision integral is obtained,

expression (3°61)o

I
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APPENDIX C

CAIDULATION OF THE PARTIAL HEAT FlOW COLLISION IMTFGRAL

Col The Partial Heat Flow Collision Integral as a Function of

the Diffusion Mach Number

,. I 2c
Set_ Qs = 2-msCs sk in (3.2), we have for the partial

heat flow collision integral

[g(1 msC2sCsk)] ms //H(Cs2Csk_C2Csk)FsFtlgbdbd_d_d_l
st

(c.1)

Following a procedure exactly parallel to that of Appendix B we

express the random velocities cs and cs in terms of the center-

of-mass and relative velocities co , g , and _' (see (B.2a,b)),

and obtain after considerable manipulation,

,2 , 2 rat ,(gi__)(Cok_Usk ) +
cs Csk-CsCsk = 2 _oo (c°i-UsiJ

+mr -_ -*- 2 mt 2 2 mt 2
_o [(°°-Us)+(_o) g ](gk-g_)+2(_o)(c°i-_s_)C_g_-gigk) "

(co2)

Substituting the expressions for g and _', (Bo2d,e), into

(Co2) and integrating over d_ gives us

I
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2_

/

O

,2, 2
Cs Csk-CsCsk )d_ = mt{2g (c -u )(Cok-Usk) +

2_(l-cos×) _o i oi si

+ + 2 _ 2 2 (m_)2(Coi_Usi)+ gk[(Co-Us) +(_o ) g ]}+2_(1-cos2x) (g26ik-3gig k) o

(0.3)

Then substituting (Co3) into (Col) and making use of the definition

for the general collision cross section, we obtain

[_(½ msC_Csk)] = (_/2)// FsFtlg{S(1)(g)[2gi(Coi-Usi)(Cok-Usk) +
st

+ gk((_o-_s)2+(mt/mo)2g2)]+(mt/mo)S(2)(g)(Coi-Usi )(g2_ik-

- 3gigk )}dv÷d_l . (C.4)

Then from (2.34), (2o41), (3o12), (3.16), (3ol7a,b), (3.18a-c),

(3.19), (3o21), and (Bo4) we find _2
C o

-[-_ +
NsN t _ _ a

[6(½msCsCsk)2 ]st = (_/2) -_- (a_/a_)ff dCodye

"{S(1)(aoY)[2Yi(_oi+ao(_Yi+b¢i))(_ok+ao(aYk+b_k )) +

+ yk( (Co+ao(ay+be)+_ + )2+(mt/mo)2ao2y2)]+S(2)(aoY )[(mt/mo)aoy2 (Coke,+

+ ao(aYk+b_k))-3(mt/mo)(_oi+ao(aYi+bei))aoYiYk ]} •

I
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Z58

P
"{i+

Ps

I % %

--_ [Cop-ba o(Yp-_-p)][Coq-ba o (yq-Eq) ] -
a
s

- 4qsP 21 +_ b +_ 2 _-__-_ <Co-_o<_-__o_-_o<_-_
Psas a s

+

l %

+ Pt 2 [_+(l-b)=(Yp-_)]FCoq+(l-b)ao(Yq'_q)]-oo-o _pL_ -
at

2- [z- 5
Ptat

12 (C_o+(l-b) (y_-_))2]Ecop+(l-b)ao(yp-cp)]}

at
(Co5)

%

The d_o integration can be directly performed (see (A.4) for the

required integrals); the result is the expression (3.25).

Co2 Small Diffusion Mach Number

Expanding the exponentials in (3o25), multiplying through,

retaining terms up to second order in ei (i = 1,2,3), and

performing the integrations (Bee (A.2), (A.4), for the required

integrals), we obtain (after considerable effort)

[6(½ 2msCsCsk)]
st

+

+

a2

= _ ac3 BNs'_st{5 _k[a2(1-3z)+2 mt_oaz(2)+ 7_ +
a o

- _ _ z)] +"-_ (l-z)]+ _ Sk{a[llz-6+ ? _.2(!3z'
m
o

28
mt [2(1_z(2))+ 5?_ 2(_(2)+ _8 z)]}+ _-_ _kEjSj[2a(4z'- _ z) +mo

+
2 2

(7 _<2)+4z)]+R' ' _a__ [7z'-5z-2+ e (189Z"-350z'+lTlz)] +

I
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30 2 [5(7z'-5z-2)+c2(63z"-98z'+45z+42z(2) )] +
m
o

a 2

+ _ _o_ [z+ 7 ¢2(z'-2z)]+ 115mtmo a[5(2+5z(2)-7z'(2)) +

+ 73(17z'(2)-9z"(2)-8z(2)+4z,- _8_ z)]} +

+ 1-514_k_jRj[a2(_ z"-3Oz'+ _14 z)+ momta (9z'- --z+--_829 z' (2) _

+

a2
ii z(2)_9z,,(2)) + 5 _ (z'-2z)+ I- T (_(2)+9z"-14z,+2 _- 2 Z)] +

ao o
g,- m _

a2 2
a

19 18 Z_kCjH j]+_Y _Y
_'o_ [Hk(l- z¢2) - -_ _-o2EjGjk +

+ _l cjEjk[a2(2+19z_21z ,)+ _omta(3_4z_13z (2)+14z ,(2) ) _

a2 m2

-5z +÷ Bz- Zmo'+3z(2)-I) ] +

2 cjFjk[a(2_9z)+ 1 mt 3+z(2)
+_ _oo ( )]} o (C.6)

Substituting for Eli , Ri , a , Fij , Si , Gij , Hi,(3.22b,c),

(3o26a, c-f), respectively, we obtain after considerable manipulation

the expression (3.45)o

I
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C. 3 Lar6e Diffusion Mach Number

We have from (3°25), upon making the transformation (B.7), for

inverse power interparticle force laws

2

_<_c_o_ aoo,n+__eZ_+_ z_n+___- e +__)] 2st 2 st I
E

mt
•{2(Zp+_p) (aZp+ mo--ep

mt
+ 2 (_---

0

mt m 2 2

)(aZk+ _oo ek)+(Zk+_k)[Z2(a2+ "-_)+2 mt
mo mo

m2

2 Z2)} +
_)Zpep] }.{I+ZIZjEij +ZiRi (l-

a+

O

mt
+ 2 (Zp+Sp) (aZp+ --mo

2 Z2
ep)[ZiFik+Sk (I- _ )- _ SiZiZk] +

mt ek)+(Zk+Ek )(aZp+ mt+ 2[(ZP+CP)(aZk+ _oo _o eP)]°[ZiFip +

a2 a 2

+ Sp(1-_2z2)___siZ±Zp]+25__ (zk+_k)+7_ (zi+_i)alk+
0 0

a2 2 a2

5 a ZiRi(Zk+_k )- _o_ Zi_ (zk+_k) z2+ 25-_o2 ZiZjEij(_+_k)+ 2 a2
O

2 2
lau 2 a

+ _ --2aoHi(9Zi_+7Ziek+2Zk_i )+ _ _o _Zj (Zj+Ej)} +

2

ao A2(P) mt n+li d{e-Z2[l+(2 --_ + __)] o+ _-- C' e _' _ Z2 (n+l)/2
st Al-_r_ _o " E E

. { (Z-*+_)2 [ (aZk+ ms_-- ck) (l+ZiZjEij+Zi_(1- _ Z2) ) +
O

2
+

+

I
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I
I

16i

2 Z2)_ 4
+ ZiFik + _(i- _ _ SiZiZk]-S(Zk+_k )(Zp+_p)[(aZp +

2 2 Z2)_ 4 SiZiZp]}+ m% _ )(I+ZiZjEij +ZiRi(l- [ Z2 ))+ziFip+Sp (1- [
mo P

(c.7)

Expanding the binomials in (C.7), multiplying through, retaining

terms of zero and higher order in _ , and performing the

integrations (see (Ao2), (A.4), for the integrals involved), we

obtain, after substituting Eij , Ri , a , Fij , Si , Gij , Hi ,

the expression (3.63).

* n+l
Again, the factor _ is excluded from this consideration.



i62

REFERENCES

le

o

3_

o

c

e

e

8_

o

i0.

iio

12.

S. Chapman, "On the Kinetic Theory of a Gas. Part II.

A Composite Monatomic Gas: Diffusion, Viscosity, and

Thermal Conduction," Phil. Trans. Roy° SOCo (London) A217,

June 1917, pp. l15-197J

So Chapman and To G. Cowling, The Mathematical Theory of Non-
Uniform Gases (University Press, Cambridge, England,

'1960),Ch_ 8o

H. Dreicer, "Electron and Ion Runaway in a Fully Ionized Gas,I,"

PhySo Rev. 115, July 1959, pp_ 238-249°

A. Mo Cravath, "The Rate at which Ions Lose Hhergy in Elastic

Collisions," Phys. Revo 36, July 1930, pp. 248-250°

Lo Spitzer,"Stability of Isolated Clusters," Monthly Notices

Royo Astron. SOCo i00, March 1940, ppo 396-413.

Jo Mo Burgers, "Statistical Plasma Mechanics," published in

the Symposium of Plasma Dynamics (Addison-Wesley

Publishing Company, Inco, Reading, Massachusetts, 1960),

edited by Fo Ho Clauser, ppo 155-157.

G. Boulegue, Po Chanson, Ro Combe, M o Feix, and P. Strasman,
in Proceedings of the Second United Nations International

Conference on the Peaceful Uses of Atomic Energy (United
Nations, Geneva, 195"8"),Vol_ 31, po 242°

T. Kihara and Yo Midzano, "Irreversible Processes in Plasmas

in a Strong Magnetic Field," Revo MOdo Phys. 32, October
1960, pp. 722-730.

E. Ao Desloge, "Exchange of Energy between Gases at Different

Temperatures," PhySo Fluids 5, October 1962, ppo 1223-1225o

To Fo Morse, "Energy and Momentum Exchange be$ween

Nonequipartition Gases," PhySo Fluids 6, October 1963,
ppo 1420-1427o

B° S. Tanenbaum, "Transport Equations for a Gas Mixture,"

Fgyso Fluids 8, April 1965, pp. 683-686°

I. Io Kolodner, "On the Application of the Boltzmann Equations

to the Theory of Gas Mixtures," PhoDo Thesis, New York

Univo, 1950o



I

I

I

I

I
I

I
I
I

I
I

I
I

I

I
I
I

13.

14°

15.

16.

17.

18o

19.

20.

21.

22°

23°

24°

25°

26.

163 "

J. Mo Burgers, "The Application of Transfer Equations to the

Calculation of Diffusion, Heat Conduction, Viscosity and

Electric Conductivity," Insto FLuid Dynamics and Appl.

Math., Unlvc of Maryland, Techo Notes BN-124a,b, issued

on Contract AF 18(600)993, May 1958.

F. Ao Lyman, "The 13-Moment Equations and Their Application

to the Calculation of Transport Properties," Lewis

Research Center, NASA, Cleveland, Ohio, Notes for Lewis

AdVo Study Course, 1963-1964o

Ro Herdan and B_ S. Liley, "Dynamical Equations and Transpor_

Relationships for a Thermal Plasma," Revo MOdo Phys, 32,
October 1960, pp. Z31-741.

W. Lo Everett, "Generalized Magnetohydrodynamic Equations

for Plasma Systems with Large Currents," Ph°Do Thesis,
Univ. of Michigan, 1961o

" Comm. onH o Grad, "On the Kinetic Theory of Rarefied Gases, ,,,

_Pure and APRI0 Math° 2, December 1949, pp. 331-407o

E. Po Gross and Mo Krook, "Model for Collision Processes in

Gases: Smali-Anplitude Oscillations of Charged Two-

Component Systems," Physo Revo 102, May 1956, pp. 593-604.

Lo Sirovlch, "Kinetic Modeling of Gas Mixtures," Phys. Fluids

5, August 1962, ppo 908-918o

Chapman and Cowling, Ch. 2o

Do Mintzer, "Transport Theory of Gases," published in

The Mathematics of Physics and Chemistry (D. Van Nostrand
Con_pany, Inco, Princeton, New Jersey, 1964], edited by

H. Margenau and Go M o Murphy, Cho i_

Bo So Tanenbaum, Plasma Physlcs (McGraw-Hill Book Co., Inc.,

New York, N. Y o, in press)°

"The Application o_ "Burgers, _, ppo 6-8o

Mintzer, po 13.

Mintzer, pp. i4-17_

Tanenbaum, Pl____maPhysics_

I



P

27°

28°

29°

30.

31o

32°

33°

34°

35.

36°

37°

38°

Ho Grad, "Note on N-Dimensional Hennite Polynomials ,"

Conm_ on Pure and Appi_ Math° 2, December i949, pp. 325-330.

Mintzer, ppo 18-19,

l_fi_ntzer, pp. 3-4°

Burgers, "The Application o.. ," p. 39.

Lyman, p o 122o

,r
Burgers, "The Application ooo, pp. 39-46.

Everett, ppo 33-36°

Burgers, "The Application o.., Pp. 73-78.

Chapman and Cowling, p o 172.

"The Application .o "Burgers, o, pc 50.

Lyman, po 133.

Lyman, po 95°

39° B. Kivei, "Elastic Scattering of Low-Energy Electrons by

Argon," PhySo Revo 116, November i959, pp_ 926-927°

40°

4io

P. L_ Bhatnagar, Eo P. Gross, _ud Mo Krook, "A Model for
Collision Processes in Gases° I. Small Amplitude

Processes in Charged and Neutral One-Component Systems,"

PhFSo Revo 94, May i954, ppo 511-525_

Bo Bo Hamei, "Kinetic Model for,Binary Gas Mixtures,"

Physo Fluids 8, March 1965, pp_ 4±8-425°

42° B. Bo Hamel, "Two-Fluid Hydrodynamic Equations for a Neutral,

Disparate-Mass, Binary Mixture," Phys. Fluids 9_, January

1966, ppo 12-22.

43.

44_

To Fo Morse, "Kinetic Model Equations for a Gas Mixture,"

Phys. Fluids 7_, December 1964, pp. 2012-2013.

Lo H. Holway, Jr., "New Statistical Models for Kinetic

Theory: Methods of Construction," Phys. Fluids 9,

September 1966, pp. 1658-1673o

45° Lyman, pp_ 113-114o



I

!
I

I

I

I
I
I

I
I

I
I

I
I

I

46°

165

G. Po Chew, M. L, Goldberger, and F. E o Low, "The Boltzmann

Equation and the One-Fluid Hydroma_netic Equations in the

Absence of Particle Collisions," Proc. Roy.. Soc. (Lond0n_)

____, September 1956, pp. ll2-118.

Lymsn, pp. 188-190o

Lyman, pp. 154-157o

I


